TRAINING OF TRAINERS PROGRAMME ON CAPACITY DEVELOPMENT OF ETP OPERATORS

Promotion of Sustainability in the Textile and Garment Industry in Asia - FABRIC

Day 5: Presentation 2

Safety & health in ETPs

Common Hazards in ETP

Managing hazards & risk

Managing Hydrogen sulphide

Relevance of occupational safety and health (OSH)

- Personal concern for one's and others' well-being
- Maintaining motivation at work
- Economic angle
 - Accidents leading to work-stoppage, investigation and fines by authorities
 - ✓ Payment of compensation to injured or sick workers
 - ✓ Lower productivity of workers when sick
 - ✓ Cost for replacement of workers recruitment, training)
 - ✓ Good and safe working conditions for keeping key personnel

Focus of OSH management

- Promoting and maintaining highest degree of workers` physical, mental and social well-being
- Eliminating and controlling work-related hazards and risks to safety and health
- Adapting work to workers and each worker to his/her job
- **Preventing workers` departures** for health reasons and poor working conditions
- Enabling workers to protect themselves

Aspects of OSH management

- Identifying and assessing hazards and risks (regular and non-regular operations and situations)
- Eliminating hazards (e.g. hazardous materials or operations)
- Minimizing exposure to hazards
- Implementing engineering controls
- Promoting and using personal protection & hygiene
- Providing training and instructions
- Monitoring and reporting

Aspects of OSH management

- Machine safety
- Electrical safety
- Chemical safety
- Ergonomics
- Work environment related safety
- Workloads and material handling
- Psycho-social safety
- Personal protection
- Emergency preparedness

What are the common hazards in the ETP?

Mechanical hazards

- Contact with
 - ✓ moving machine parts (e.g. gears, motors)
 - ✓ sharp edges
 - ✓ hot surfaces
 - ✓ other hazards with potential to crush, burn, cut, shear, stab, strike workers
- Risk of
 - ✓ occupational injuries, burns and fatalities

Electrical hazards

- Contact with high voltage in
 - ✓ motors
 - ✓ switchboard
 - ✓ Cables
- Enhanced risk due to poor installations, maintenance, wet and corrosive environment
 - ✓ electric shocks and (fatal) electrocution
 - ✓ electrical burns
 - ✓ fall injuries caused by jolts after contact with electricity
 - igniting fire (faulty wire, poor wiring, static electricity)

Electrical safety hazards

ETP high corrosion: **Contact with live Explosion where** faster damage of parts causing electricity could be Faults which could insulation in wires shock and burns is the source of cause fires. & control panels. a serious risk. ignition. ١ 1 N. 1 1 Χ.

Work-environment related hazards

Noise

- Air blowers
- Sludge centrifuges
- Poorly maintained or lubricated moving machine parts
- Pressurized air leaks or bursts

Noise exposure for long period causing

- gradual and often irreversible hearing loss
- stress and high blood pressure
- indirect cause of injuries due to lack of concentration or distraction

Work-environment related hazards

Heat-stress

- Exposure to high ambient temperature and direct sunlight during work in ETP
- Exposure to high radiant temperatures from raw effluent as well as hot or heat emitting equipment

Risk of

- heat exhaustion
- dehydration
- heatstroke and fatigue

Biological hazards

- Exposure to disease causing biological agents (bacteria, viruses, fungi, mould, blood borne pathogens, parasites)
 - Ingestion (eating, drinking or smoking at workplace or without washing hands)
 - ✓ Inhalation (small droplets, aerosols)
 - Skin and eye contact (e.g. skin wounds, softened skin, splashes on eyes)
- Bites by disease-carrying mosquitos
- Many places in ETP (aerated tanks, mixers, inflows)

Chemical hazards

- Exposure to and contact with treatment chemicals by
 - ✓ Skin and eye contact
 - ✓ Inhalation (gases, dust, vapours, mist and fume)
 - Accidental ingestion (eating, drinking or smoking at workplace or without washing hands after handling chemicals)

Chemical hazards

- Common ETP locations with chemical hazards (primary treatment)
 - ✓ Chemical storage
 - Chemical preparation and dosing
 - Disposal of chemical waste (e.g. residuals, packaging)
 - ✓ ETP laboratory

Chemical hazards

- Potentially hazardous chemicals in ETP:
 - ✓ Lime (e.g. dust released during handling)
 - ✓ Acidic chemicals (e.g. Ferrous Sulphate/Alum.
 - ✓ Acids/Alkali stored and used for neutralization.
 - ✓ De-foamer used for foam control.
 - Chlorine used for disinfection and sludge bulking control
 - Identify possible hazards by consulting safety data sheets

Ergonomic hazards

- In processes involving
 - heavy lifting or handling of heavy tools or loads (e.g. machine maintenance, replacement of aeration systems, tank cleaning)
 - prolonged unconformable or strained working position
- Risk of
 - ✓ injuries
 - ✓ musculoskeletal disorders

Other hazards

- Asphyxiation (suffocation) while
 - \checkmark working in confined space
 - ✓ Cleaning of clogged pipes
 - $\checkmark\,$ Removal of sludge and sediments
- Drowning following falls or slips into tanks
- Risk of Fatalities

Fredex / stockadobe

HAZA

AKL

What steps you suggest to manage these hazards in ETP?

How to proceed

- Become aware of hazards
- Identify and map locations with such hazards (e.g. using eco-mapping) in ETP
- Observe and record unsafe conditions and practices
- Assess risk (how likely, how severe effects)
- Consider ways for improving focusing on
 - ✓ eliminating hazards
 - ✓ reducing risk
 - ✓ protecting against hazards
- Prepare and implement corrective actions

Example - Eliminating hazards

No hazard-no risk

- Substitution with safer equipment or chemicals
- Process modification (switching from manual to semiautomatic dosing)
- Change/ or modification of plant layout
- Provision of covers for man holes and pits

Example – Minimizing risks

Hazard still there but less chance of doing harm

- Installation of machine guards and cover
- Installation of fences and railings
- Installation of noise muffling devices
- Installation and maintenance of local exhaust facilities and general ventilation
- Insulation and proper earthing of electrical installations (chemical corrosion protection)

Machine safety

Good practices to check (Examples)

- Coupling guards for centrifugal pumps, screw pumps, high pressure pumps
- Guards around agitators of chemical preparation tanks and flash mixers
- Guards around drive assemblies of clarifiers and clariflocculators
- Guards on air blowers
- Noise reduction devices on air blowers
- Active guards on filter press

Electrical safety

Good practices (Examples)

- Correct and clean installation of cable connection, switches and control boards
- Earthing of motors
- Proper IP rating of switches and motors
- Provisions against corrosion
- Provision of properly rated fluted rubber mats in front of switch boards

Chemical safety

Chemical safety

Good practices (Examples)

- Standardised labelling and markings of all chemical containers
- Creating awareness using standardized warning and precautionary signs
- Segregation of incompatible chemicals and secondary containments
- Properly use required **personal protective** equipment (respiratory, skin and eye protection)
- Apply good personal hygiene practices

Chemical safety

Good practices (Examples)

- Standardised labelling and markings of all chemical containers
- Creating awareness using standardized warning and precautionary signs
- Segregation of incompatible chemicals and secondary containments
- Properly use required **personal protective** equipment (respiratory, skin and eye protection)
- Apply good personal hygiene practices

Chemical safety

- Replace existing chemicals with non- or less hazardous ones
- Change processes (e.g. dosing systems) to reduce need of directly handling chemicals
- Use engineering controls to reduce chance of exposure (e.g. local exhaust ventilation, general ventilation)
- Use administrative control to reduce exposure time of workers
- Prepare and communicate work procedures
- Train and instruct workers on safe handling practices
- Provide and use specified personal protective equipment

Chemical safety

Good practices – Using and following safety signs

How do you define ergonomic hazard?

Ergonomic safety

Ergonomic safety

- To optimize human interactions with products, equipment and processes
- design of workstations, workplaces and machine controls
- implementation labor-saving processes (e.g. lifting)
- · Common focus on avoiding
 - \checkmark strained position
 - ✓ handling of heavy loads
 - \checkmark situations causing physical and mental stress

Ergonomic safety

Personal protection

- Covering
 - ✓ Use of personal protective equipment (PPE)
 - ✓ Personal hygiene practices
- Use of PPE last option in hierarchy of control measures
 - ✓ Immediate measures (!) until other options in place
 - ✓ Protection rating of PPE limited
- Proper selection of PPEs
 - \checkmark Specific to situation and need
- Training on proper use and maintenance needed

Typical PPE in ETPs (selected)

- Helmet
- Safety gloves (e.g. chemical, electrical)
- Overall
- Boots and safety shoes (hardened toe caps)
- Noise protectors
- Safety goggles and shield
- Respiratory protection
 - ✓ Air-purifying masks
 - ✓ Air supply system (confined space, emergency)
- Safety harness

What should be the emergency safety provisions in the ETP?

Emergency provisions and facilities

- On-site emergency plan
- Safety shower (nearby)
- Eye / face rinse station (nearby!)
- First aid box and trained first aid personnel on each shift
- Fire fighting equipment
- Lifebuoys and rescue hooks at tanks

Emergency provisions and facilities

First aid box - Suggested content

Absorbent gauze [packet of 10 pcs]	Adhesive plaster roll [1.25 cm width]	
Crepe bandages [5.0 cm height]	Crepe bandages [7.5 cm]	
Disposable glove	First aid pamphlet	
Individually wrapped sterile adhesive dressing	One-way valve transparent mask or two- way mouthpiece	
Safety pins	Scissors	
Sterile water or saline in 100 ml disposable container	Triangular bandage	

Supportive measures

- Induction and refresher safety training to staff at all levels
 - Basic and advanced safety measures (dealing with common hazards
 - ✓ First aid and emergency training (including regular drills)

Hazard and safety communication

- ✓ Sign boards an safety information
- Emergency contact numbers of fire station, doctor, EHS manager and staff
- ✓ Establishment of safety committee
- ✓ Periodical health monitoring

Supportive measures

Awareness creation

- Prevalent hazards
- What to do
- What not to do

Safety risks & precautions against Hydrogen Sulphide gas

Image: Metalcare Group

What do we know about Hydrogen sulphide?

- Generation and release of Hydrogen Sulphide (H₂S) gas key risks in ETP
 - highly toxic, colorless gas, heavier than air, invisible, strong unpleasant odor (in low concentrations)
 - causing drowsiness, nervous problems, loss of consciousness, death (in high concentration)
- Detection of H₂S critical:
 - strong odor in very low concentration not having adverse effects on health
 - Severe health effects in higher concentrations, when not detectable by humans by smell
- Often wrong assumption about no H₂S being present (!)

Impact of H2S gas on humans

Exposure in ppm	Time	Effect on unprotected person	
0.03	No limit	No effect	
0.03-2		Odour threshold	
10	Up to 8 hrs	No effect	
10-20		Threshold for eye irritation	
20-200		Headache, nausea, general weakness, pain in legs	
200-500	1 min.	Irritation of nose & throat, vertigo, blurring of vision, temporary loss of consciousness	
500-900	1 min.	Profound coma, muscular spasm- twitching convulsions, disorientation after recovery	
900 and above	1 min.	Instant coma and death	

ETP locations with Hydrogen Sulphide gas risk

- Raw effluent channel
- Manholes
- Pumping stations and receiving sump at ETP
- Valve and pump pits
- Equalization tank, effluent transfer pump sump and valve pits
- Unutilized pits and tanks
- Primary sludge pumping room and tanks
- Sludge thickener
- Sludge dewatering equipment feed tank

ETP locations with Hydrogen Sulphide gas risk

Effluent channels

Sludge collection tanks

Deep pits

Detection and measurement of H₂S

H2S meters commonly used

- On-line meters installed in fixed location
 - \checkmark in raw effluent and sludge handling areas
 - ✓ to alert operators with alarm at set concentrations (e.g. 10 to 15 ppm)
- **Portable meters** for real-time accurate reading
 - ✓ For testing confined spaces and general work areas to verify presence or elevated levels of H₂S
- Personal detectors worn by workers
 - to alarm workers at set concentrations (e.g.10 to 15 ppm)

Detection and measurement of H₂S

Alternative methods without meters

- using lead acetate paper as emergency measure
- Similar to pH papers and handy.
- paper strips extended into tank or areas for few minutes,
- coloration indicate gas presence, but not very reliable compared to H2S meter
- Moist lead acetate paper turning black due to formation of lead sulphide when reacting with gas.

Protecting against H2S

Need for external supply of clean air (oxygen)

- Self contained breathing apparatus (SCBA)
- Air line supply system

Using air line supply system to work in deep tanks

- Compressed air cylinders supply for one or two wearers
 - ✓ 1.5 hours for two persons or 3 hours for one person
 - depending on workload, ambient temperature, wearer`s stress level.
 - ✓ air supply to be constantly monitored
- Wire embedded rubber air hose with adjustable couplings of at least at least 15 meters.
 - ✓ protected against contact with sharp edges
 - \checkmark regularly tested for wear, tears and leaks.

Work procedure for areas with H₂S

- ✓ Use mechanical equipment to avoid manual entry
- ✓ Agitate tank or areas manually or mechanically
- ✓ Induce temporary air circulation using blowers
- \checkmark Check H₂S gas with gas meter (or lead acetate paper)
- Enter with safety harness, air supply unit, gloves and boots
- Person outside maintains clear and constant communication with worker inside
- Compressor to placed at distance to draw fresh air
- Compressed air to be free of moisture, oil and carbon monoxide

Precautions for dealing with Hydrogen Sulphide gas

How do you respond to an emergency due to H2S?

Being prepared for emergencies

- Exclusive emergency and safety equipment
 - ✓ ready in properly marked location
 - clean and in good order
- First aiders and yourself trained on required measures
- Rescue drills for all risk locations in your ETP
 - \checkmark in particular from tanks, pits, manholes

Being prepared for emergencies

- **Contact numbers** of fire brigade and hospital on display.
- Close liaising with nearest fire brigade for immediate assistance
- Close liaising with company doctor and nearest hospital to assure their emergency preparedness
- On-site emergency provisions to match response time of emergency services!

Responding to emergencies

- Protect yourself before rescuing victim using appropriate safety equipment
 - Do not enter area if not adequately protected!
- Immediately remove victim from accident area
- Alert emergency service
- Start providing first aid (see next slide)
- Arrange for transport to nearest doctor or hospital

Responding to emergencies

First aid measures

- Artificial respiration if victim not breathing
- If breathing and unconscious, place victim on side with face down
- Attend to wounds and stop bleeding
- Treat for shock.
 - ✓ Place victim on side and
 - ✓ Cover with blanket to keep warm.

Responding to emergencies

First aid measures

H ₂ S	Symptoms	Preventive measures	First Aid measures
exposure			
Inhalation	Cough, dizziness,	General ventilation	Fresh air and rest
	headache, sore throat,	Local exhaust ventilation	Artificial respiration
	lung edema,	Respiratory protection	Medical attention
	unconsciousness		including oxygen supply
Eye contact	Redness, eye pain	Safety goggles	Washing eye with fresh
		Eye protection combined	water
		with respiratory protection	Rest

To remember!

- Efforts to focus on eliminating hazards & reducing risks
- Use of personal protective equipment helpful but only one step in controlling hazards and risks
- Priority to avoid need for entry into confined and H₂S risk areas
- Develop and use standard operating procedure
- Keep ready and use necessary safety and emergency equipment
- Important to update one's safety knowledge and skills by regular training and drills

For further reading and reference

UNIDO Pocketbook "How to deal with H₂S gas in ETPs

 <u>https://open.unido.org/api/documents/4670868/download/How%20to%20</u> <u>deal%20with%20hydrogen%20sulphide%20gas%20in%20tanneries%20</u> <u>and%20effluent%20treatment%20plants</u>

UNIDO Safety Video

– www.youtube.com/watch?v=xQkXMyetLfM&t=157s

UNIDO e-learning

<u>https://leatherpanel.org/content/unido-line-course-how-deal-hydrogen-sulphide-gas</u>

Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH

Registered offices Bonn and Eschborn

Friedrich-Ebert-Allee 32 + 36 53113 Bonn, Germany T +49 228 44 60 - 0 F +49 228 44 60 - 17 66

E info@giz.de I www.giz.de Dag-Hammarskjöld-Weg 1 - 5 65760 Eschborn, Germany T +49 61 96 79 - 0 F +49 61 96 79 - 11 15

