## TRAINING OF TRAINERS PROGRAMME ON CAPACITY DEVELOPMENT OF ETP OPERATORS

Promotion of Sustainability in the Textile and Garment Industry in Asia - FABRIC







Day 4: Presentation 4

## **Tertiary Treatment for Textile Wastewater**



Contents

Objectives of tertiary treatment

Disinfection as a tertiary treatment

Filters for polishing treated effluent

Chemical oxidation for organic removal from treated effluent

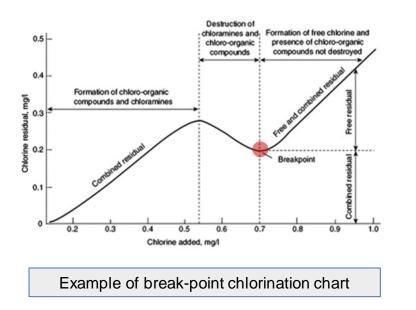
- Final treatment stage, mostly to comply with norms
- Focus on
  - ✓ Reduction of color
  - ✓ Reduction of suspended solids
  - ✓ Destruction of pathogens
  - ✓ Removal of organics
  - ✓ Improvement of treated effluent appearance
  - ✓ sometimes for aesthetic purpose and as precautionary or complimentary measure

- Required as **pre-treatment for effluent recovery** using membrane systems by removing turbidity, hardness etc.
- Single stage or using combination of tertiary systems.
- Often installed as polishing treatment after physicochemical treatment, in most primary ETPs and referred to as tertiary treatment



#### **Common tertiary treatment systems**

- **Disinfection** mainly to kill micro-organisms in treated effluent and some for organic removal.
- Filters, using filter media to filter out suspended particles in effluent
- Adsorption filters most commonly activated carbon filters to remove organics
- Oxidation systems to oxidize residual organics in treated effluent




#### Other tertiary treatment systems

- Chemical precipitation systems for removal of phosphates/metals.
- Softening using lime/soda softening or zeolite softeners
- Membrane based filtrations (using ultra filters or nanofilters)

#### Disinfection

- To kill micro-organisms, specifically pathogens in treated effluent
- Chlorination most common disinfection system
  - mixing effluent with chlorine gas in contact chambers or dosage of hypo-chlorites
  - ✓ Chlorine killing micro-organisms by breaking their cell walls
  - ✓ In case of sodium or calcium hypo-chlorites, chlorine content to be calculated and dosage fixed accordingly
- Generation of disinfection-by-products (DBPs)
  - $\checkmark$  haloacetic acid, trihalomethane, and chloral hydrate
  - $\checkmark$  controlled by activated carbon filtration or membrane filters.



#### **Disinfection using chlorination**

- Chlorination usually based on break-point chlorination
  - Keep adding chlorine (or hypo) to measured quantity of effluent
  - Check residual chlorine using DPD laboratory tablets
  - ✓ Residual chlorine first increasing, then decreasing and increasing again with more chlorine dosing
  - Point of increase = break point or correct dosage of chlorination.

#### **Disinfection using chlorination**

- Storage and dosing chlorine gas difficult and safety risk
  - Use of sodium hypochlorite or calcium hypochlorite in small- and medium ETPs but less preferred due to sludge issues
  - ✓ Sodium hypochlorite generally containing 10% 12% chlorine
    - Need to calculate dosage accordingly
- Increased efficiency of chlorination with higher dosage, lower pH, higher temperature and longer contact time (usually 30 min)
  - If not effective, take corrective actions such as by increasing dosage, increasing contact time (reduce flow) or reducing pH

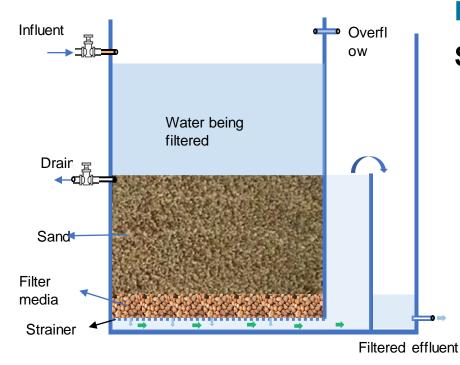
#### **Disinfection using Ultraviolet (UV) system**

- Pathogens killed by exposing effluent to UV radiation damaging DNA of bacteria/virus
  - effluent passing through chamber illuminated by UV rays from UV lamp
  - $\checkmark$  low pressure and medium pressure lamps common.
    - Medium handling higher flows, but consuming more power
- As per wavelength classification into UV-A, UV-B, UV-C
  - $\checkmark$  UVA less powerful, but consuming less power
  - ✓ UV-B with medium efficiency and medium power consumption
  - $\checkmark$  UV-C highest power consumption and efficiency

## UV disinfection

- Effective in bacteria, viruses and cysts
- No residual effect
- No need to buy, store dangerous chemicals.
- Short contact time (20-30 sec)
- Less space requirement

- Low dosage not effective.
- Organisms sometimes surviving
- Frequent cleaning
- Not suitable for TSS levels above 30 mg/l
- Costlier in installation


#### Rapid sandfilter Advantages

## Rapid sandfilter disadvantages

Image: AOS treatment solutions

#### Filtration

- Used for removal of suspended solids in treated effluent
  - Also partly reducing BOD/COD by removing some organics (like MLSS particle) in the suspended solids
- Done by gravity for pressure filters
  - Slow sand filters using gravity (similar to sludge drying beds)
  - Pressure sand filters using vessel filled with filter media with effluent being pumped and filter under pressure
  - ✓ Fine filtrations (such as pre-treatment of membrane) with cartridge filters



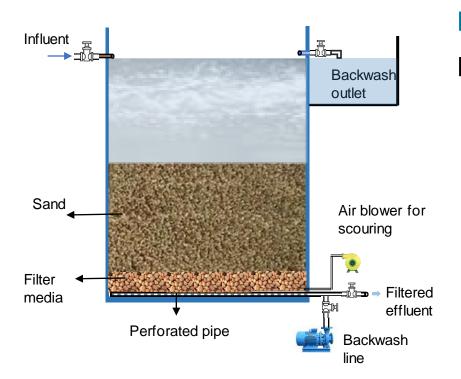
#### **Filtration - Gravity sand filters**

#### **Slow sand filters**

- similar to sludge drying beds with coarse media at bottom, fine sand at top
- water admitted from top, with pressure by water column speeding filtration
- · Solids retained in top sand layer
- Periodically, filter dried and solids scooped out for disposal
- Top sand cleaned and topped up with fresh sand

## Slow sand filter

- Simple construction
- very low operating costs
- simple process control
- good efficiency


- high land requirement
- suitable for small ETP
- potential clogging
- not suitable for effluent with high level of suspended solids

-

Slow sandfilter Advantages



Slow sand filter disadvantages



#### **Filtration - Gravity sand filters**

#### **Rapid sand filters**

- **similar to slow sand filter**, provision in filtrate line to admit water at pressure to carry out periodical backwash
- network of net covered perforated pipes for draining & backwashing.
- backwashing with pump or water tank at sufficient height for required head
- Often with air scouring as additional washing aid

## Rapid sand filter

- higher capacity
- no manual cleaning required
- suitable for medium ETPs
- easy process control
- good efficiency

- Land requirement (less than slow sand filter, higher than pressure filters)
- not suitable for effluent with high suspended solids
- relatively more maintenance

Rapid sandfilter Advantages



Rapid sandfilter disadvantages



#### **Filtration – Pressure filters**

- Common types in wastewater treatment:
  - ✓ Pressure sand filters
  - ✓ Multi-grade filters
  - ✓ **Dual media** filters
- Similar in construction and operational pattern but varying in composition of filter media
- made of FRP, MS (often rubber lined) and stainless steel
- New types of media coming to market every year.

## Pressure filters - different vessel materials



Mild Steel (MS)



Fibre reinforced Plastic (FRP)



Stainless Steel (SS)



#### **Filtration – Pressure filters**

- Measurement of operational efficiency
  - ✓ **filtration rate** = quantity of water filtered per unit area
  - head loss = difference between inlet and outlet pressure
  - ✓ frequency of backwashing needed.
- Backwashing with clean water whenever pressure drop across filter more than 1 bar.
- Sometimes preceded by air scouring for agitating media with scrubbing action and loosens retained solids

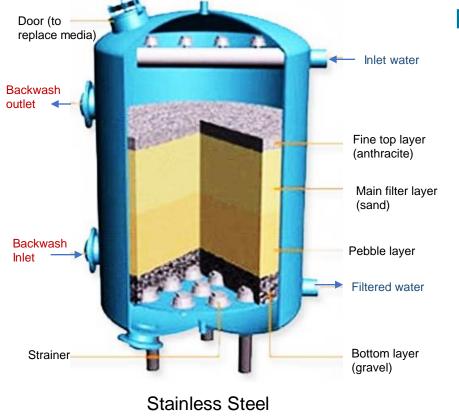


#### **Filtration – Pressure filters**

- Common filtration media
  - $\checkmark\,$  most common silica sand and anthracite coal
  - $\checkmark$  quartz sand, garnet, magnetite
- Size and shape of filter media affecting efficiency
  - Smooth and rounded better than sharp and angular media
  - Most suspended solids at surface (top 5 10 cms), gradually solids percolating down to prevent rapid pressure drop

## Pressure filters: Operation cycle

#### Service


- Inlet water is pumped down through the media via the distribution tube.
- Collect the drained water as filtered water.

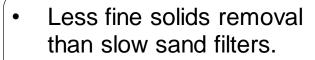
#### Backwash

- Flow is reversed.
- The flow is forced through the bottom and up through the media.
- Backwash lifts media and causes scouring
- Collected dust and debris is flushed to the drain

#### **Slow Rinse**

- Use clean water allowed to flow down through media bed & distribution tube to drain.
- With autovalves and controls, entire backwash & rise can be programmed based on fixed quantity of flow, at scheduled time or based on differential pressure.




#### **Filtration: Pressure sand filters**

- Usually cylindrical vessel filled with filter media.
- Vertical or horizontal orientation
- Set of frontal pipe work and valves
- Graded silica quartz sand
- Sand layer supported by under-bed of pebble/gravel.
- Water admitted via top distributor
- Under-drain collecting filtered water

## Pressure sand filter

- High flow rate
- no manual cleaning needed
- suitable for medium/large ETPs
- easy process control
- Low land requirement

Pressure sand filter Advantages



- Need energy for its operation.
- Backwash water requirement high.

Pressure sand filter disadvantages

26 04-09-2023 ToT-ETP Operators

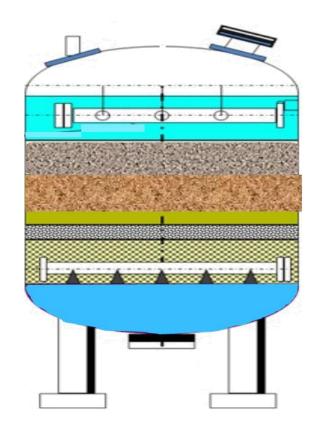


#### **Filtration : Multigrade filters**

- similar to pressure sand filter in construction with cylindrical vessel and identical piping/valves
- Same way of operation and backwashing
- coarse and fine media mixed together in fixed proportion.
- filtration efficiency not as fine as in pressure sand filter but turbidity reduction better

## Multi grade filter

- Substantially higher specific flow rate than pressure sand filter
- Turbidity reduction better than PSF
- no manual cleaning needed
- Low land requirement


Pressure sand filter Advantages



 filtration efficiency not as fine as in pressure sand filter

- Need more energy for its operation.
- Backwash water requirement high.

Pressure sand filter disadvantages



#### **Filtration – Dual media filters**

- similar to pressure sand filter in construction with cylindrical vessel and identical piping/valves
- Same way of operation and backwashing
- sand-anthracite filter or multi-media used for removal of turbidity and suspended solids
- Remove TSS as low as 10 20 microns

## Dual media filter

- Very efficient particle removal
- high filtration rate
- higher specific flow rate than PSF & MGF
- number of filters and size for ETP still smaller

Pressure sand filter Advantages



 Backwashing frequency needed for DMF is higher than PSF and MGF

- Backwash water consumption is much higher.
- Life of media is lesser.

Pressure sand filter disadvantages



#### **Pressure Filters**

#### **Maintenance requirements**

- If made in mild steel, periodical painting with epoxy coating needed
- Once a week:
  - Check of all valves, flanges and gaskets for its tightness.
  - Check for any leaks => to be arrested promptly
  - Check of pressure gauges, auto valves for their correct operation.



#### **Pressure Filters**

#### **Maintenance requirements**

- Irrespective of media, media degradation over period of time
  - $\checkmark$  more predominant with natural media
  - ✓ salt in effluent, pH variations etc. chemically degrading media
  - ✓ abrasion by flowing water physically degrading media
- Need to replenish or replace after period of time
  - ✓ Media removed through bottom door
  - ✓ Refilled through trap door at top



#### (2) Filtration – Pre-coat filters

- filters or flexible screens on which coat of filter medium given
- temporary or fixed to mechanical screen
- Filter media
  - ✓ inert materials of fine fibrous or granular structure e.g. diatomaceous earth (diatomite).
  - ✓ Other media: Perlite, powered organic rock, activated carbon, asbestos and cellulose



#### **Filtration – Cartridge filters**

- used for very fine filtration e.g. pre-treatment of membranes
- cartridge filters considered as consumables
  - $\checkmark$  possible to clean by soaking in cleaning solution
  - $\checkmark$  to be replaced once clogged irreversibly
- usually very small in construction
- generally used in-line of pumping lines
- usually pore sizes in range of 0.2 20 microns
  - ✓ smaller pore size = shorter replacement period
- There are surface filters & depth filters

#### To remember



- Filters common in tertiary or polishing treatment
- High efficiency of suspended solids and turbidity removal and easiness of control advantages of filtration vis-à-vis other tertiary treatment options
- Filters **susceptible to clogging** by suspended solids and not suitable if high TSS levels
- Recent developments in design of filters using light
  weight media with high uniformity coefficients
- Pressure filters ideal for tertiary treatment units in Bangladesh because of low space requirements

----

Image: Center Enamel

### Basic concept and overview of tertiary treatment

#### **Options for management of residual organics**

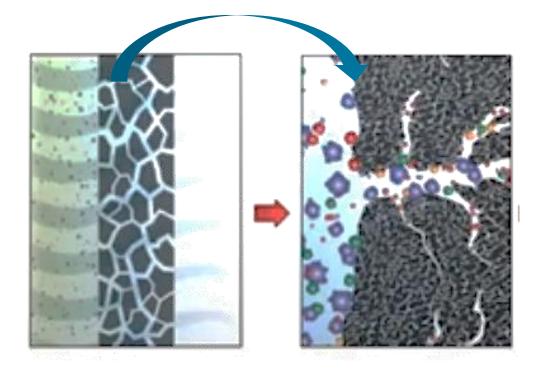
- Treated effluent containing organics not removed in biological treatment since on bio-degradable to lesser extent
- Tertiary treatment systems for removal of residual organics:
  - ✓ Adsorption of organics in adsorbent media, such as activated carbon filters and organic scavengers.
  - ✓ Advanced oxidation systems
  - ✓ Ozonation of treated effluent
  - ✓ Fenton treatment: Oxidation catalyzed by iron

#### **Basic concept**

#### Adsorption = adhesion of ions or molecules to surface

- In effluent treatment entrapment of organics (or other contaminants like chlorine) in adsorbent medium
- Physical entrapment in voids of porous medium or attachment to surface due to surface charge
- Activated carbon: Inert solid adsorbent material made from almost any carbon containing feedstock (e.g. wood, coconut shells and coal)
- Porous, inexpensive and high surface area per gram

#### **Basic concept**


#### Activated carbon

• One teaspoon of activated carbon more surface area than one football field!



#### **Activated carbon filters**

- similar in construction to pressure sand filters
- activated carbon as filter media
- commonly granulated activated carbon with 0.4 1 mm diameter or powdered activated carbon
- backwash process similar to pressure sand filters but without air scouring
- strainers at bottom to prevent carbon from flowing out with filtered and at top to prevent loss of carbon during backwash
- carbon media to be replaced once exhausted
- regeneration presently not economical



#### **Activated carbon filters**

#### Concept

- Organic molecules trapped in pores of carbon media
- Subsequent organic inflow pushing trapped material into micropores
- Process continuing till media fully exhausted

#### **Activated carbon filters**

General specification for activated carbon suitable to textile effluent

| Parameter                              | Value needed |
|----------------------------------------|--------------|
| Min Moisture, percent by mass (max)    | 5            |
| Ash, percent by mass (max)             | 2            |
| Hardness number, Min                   | 90           |
| Min Adsorption capacity- iodine number | 450          |
| Half dichlorination value, cm (max)    | 7            |
| Surface area, m2/g (min)               | 550          |

# Advantages of Activated carbon filter



### DIsadvantages of Activated carbon filter



Image: NCH Asia

Advanced oxidation processes = chemical treatment process for removing organic (and sometimes inorganic) pollutants

- Common systems
  - ✓ Ozone
  - ✓ **Hydrogen peroxide** with or without UV radiation
  - ✓ Fenton treatment
- Concept
  - $\checkmark$  Hydroxyl radical (OH-) and nascent oxygen as active reactants
  - ✓ Hydroxyl radicals produced in water with primary oxidants like oxygen, ozone and peroxides enhanced with energy sources or catalysts

#### **Photochemical oxidation process**

- Hydroxyl radicals present in chemicals with extra oxygen atoms
  ✓ generation enhanced by radiation with UV rays
  > H2O2 + UV → 2·OH
- Organics pollutants oxidized by hydroxyl radical and broken into simpler organics and further oxidized into carbon dioxide
  - ✓ **Higher efficiency in acidic condit**ions (optimal pH 3 6)
  - Natural organic matter or carbonate species reducing effectiveness
  - ✓ Reduced metal ions (e.g. Ferrous and Manganous) reducing effectiveness since consuming excess oxygen

#### **Example views of advanced oxidation systems**



AOP system by NOVEXX



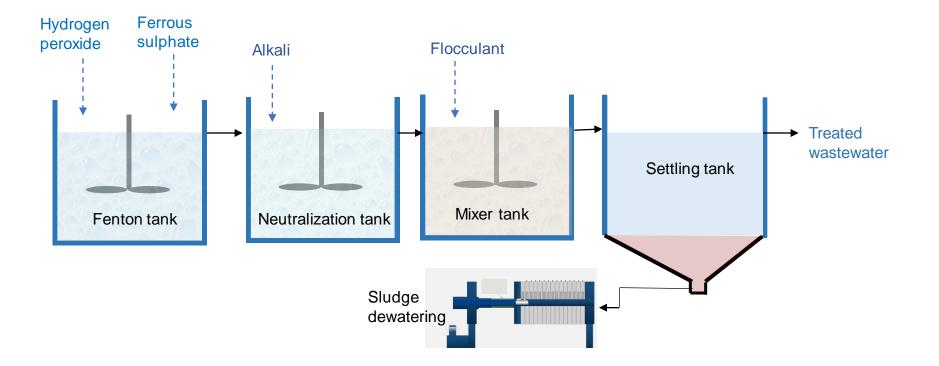
AOP system by Enviro Chemie

#### **By-product management**

- Concerns about toxic by-products despite oxidization and neutralization of toxic and hazardous organics present in textile effluent
  - Possibility of highly toxic by-products from partial degradation of dissolved organic
  - ✓ Bromate and excess peroxide
  - ✓ If chlorine used, halogenated organic by-products. e.g. toxic chlorophenols.
- By-products depending on composition of effluent (!)
  - ✓ Consider of advanced oxidation based on prior analysis of treated effluent and analysis of effluent from advanced oxidation processes

#### **Advantages**

- Low space requirement even for high capacity units
- **Complete degradation of organics** into water, carbon dioxide, and salts (Mineralization)
- Fast reaction and very lower retention times compared to conventional treatment processes
- Treatment of wide range of organics (all organic materials, some heavy metals)
- **Complete disinfection** besides organic degradation
- No sludge production


#### Disadvantages

- Need for highly skilled labor to operate and control
- High capital and operating & maintenance costs (energy, chemical reagents)
- **Complex** chemistry tailored to specific contaminants
- Good understanding required for selection of technology because of several different variants
- Need to control and remove of residual peroxide, if hydrogen peroxide based system used
- Residuals affecting membranes if proper anti-oxidant control not ensured

#### **Fenton treatment**

- Popular variant type of advanced oxidation (also as further advanced photo Fenton system.
- Based on liberation of OH radicals from H<sub>2</sub>O<sub>2</sub> catalyzed by ferrous ions (in photo Fenton with use of UV radiation)
  - oxides of iron produced in reaction catalyzing oxidation of organics by OH radicals

#### **Fenton treatment**



#### **Fenton treatment**



Fenton treatment unit by Xh2o Solutions Pvt. Ltd

#### Fenton treatment with modified Fenton reactors



Fluidized Fenton reactor (Source: Science Direct)



Photo Fenton reactor (Model: ENVIOLET)

# Fenton Treatment

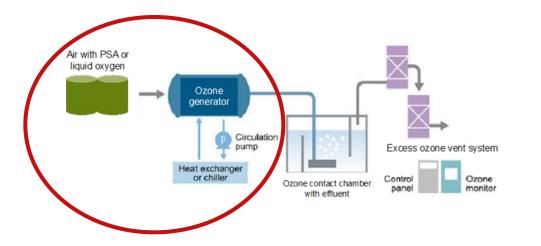
- Relatively lower capital cost
- Simple and easy process
- Suitable for all organic materials and some heavy metals
- No concentration of contaminants like salts

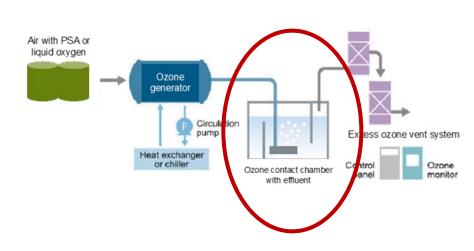
- Generation of ferric sludge for dewatering/disposal
- High operation and maintenance costs: peroxide and pH management
- Need to adhere to strict pH range

Fenton system Advantages



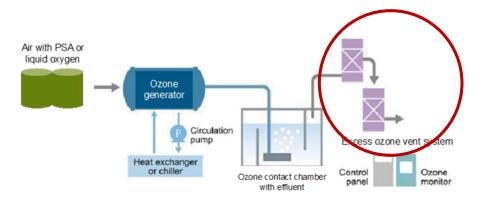
Fenton system disadvantages


Image: https://www.yazhl.com/


#### **Basic concept**

- Ozone (O3) = oxygen gas with additional oxygen atom
  - pale blue gas with distinctively pungent smell and potentially toxic
- Ozone generated in most ETPs from oxygen-bearing gas subjected to electric field or UV
  - done on-site since unstable and quickly decomposing to oxygen
  - ✓ Ozone generators using air or oxygen as source, with occasional oxygen concentrators
- when generated from air usual concentration 0.5-2% ozone
- with oxygen gas usual concentration 4 7% ozone

#### Use in effluent treatment


- Electrical discharge method most common source for generating ozone
  - ✓ Extremely dry air or pure oxygen exposed to controlled, uniform high-voltage discharge





#### Use in effluent treatment

- After generation, ozone fed into down-flow contact chamber containing wastewater to be treated
  - ✓ Aim to transfer ozone from gas bubble into bulk liquid with sufficient contact time for disinfection.
  - ✓ Commonly used contactor type diffused bubble
- co-current and counter-current
- variants: positive pressure injection, ventury, mechanically agitated and packed tower.



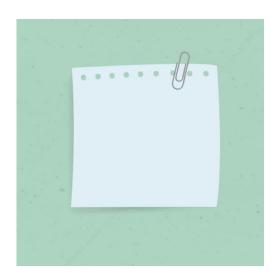
#### Use in effluent treatment

- Treatment of off-gases from to destroy any remaining ozone
  - ✓ In case of pure oxygen as feed-gas, recycling of off-gases from contact chamber possible to generate ozone or reuse in aeration tank.

#### Example



**Ozonator** (at Wylie Water Treatment Plant, North Texas)


#### **Advantages**

- Little space required
- Very effective in destroying pathogens and residual organics
- Short treatment time of less than 30 min
- No harmful residuals since ozone decomposing rapidly
- No bacteria regrowth
- Onsite generation of ozone avoiding safety issues with shipping and handling
- Increase in dissolved oxygen (DO) concentration of effluent eliminating need for reaeration positively affecting DO in receiving stream

#### Disadvantages

- High capital and operation & maintenance costs (high power consumption)
- Need for highly skilled labor to operate and control
- Not very effective at low concentration
- More complex than other tertiary units requiring complicated equipment and efficient contacting systems
- Need for corrosion-resistant material (e.g. stainless steel)
- Not economical for removal of high levels of TSS/COD
- Very toxic nature of ozone and off-gases

### To remember



- Adsorption and oxidation common options for removing organics
- Activated carbon treatment quite common in Bangladesh textile ETPs as polishing treatment
  - ✓ **Need to replenish carbon** after media exhausted (!)
- Fenton treatment installed in few ETPs
  - ✓ internationally preferred advanced oxidation method
  - ✓ **No sludge** generation and **low space** requirement
- Advanced oxidation technologies
  - costlier than other tertiary systems
  - ✓ suitable for effluent with **low residual organics**

Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH

Registered offices Bonn and Eschborn

Friedrich-Ebert-Allee 32 + 36 53113 Bonn, Germany T +49 228 44 60 - 0 F +49 228 44 60 - 17 66

E info@giz.de I www.giz.de Dag-Hammarskjöld-Weg 1 - 5 65760 Eschborn, Germany T +49 61 96 79 - 0 F +49 61 96 79 - 11 15

