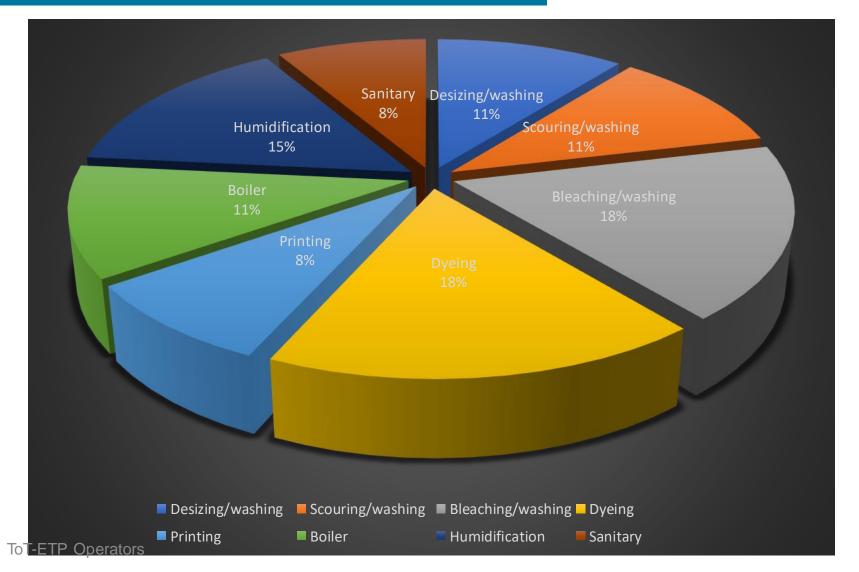


FABRIC Asia

Day 1: Presentation 4

Pollution in Textile Industry

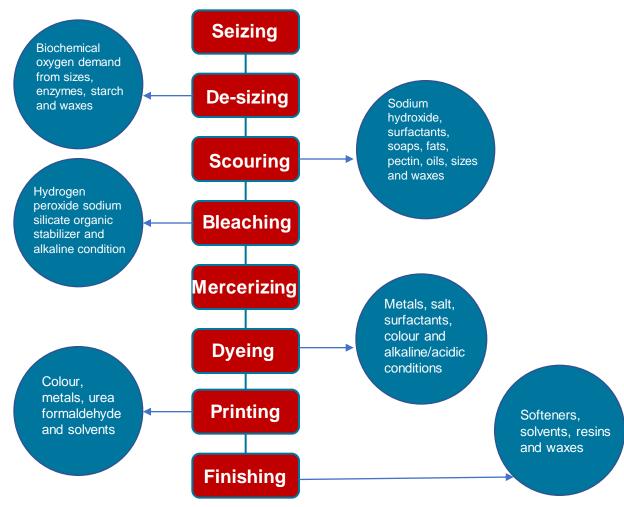


04-09-2023

Water consumption in textile processing

- Water consumption in the factory depends on the material processed (cotton, wool, Nylon, Rayon etc.).
- In Bangladesh, the normal water consumption varies from 90-160 litres per kg of material processed.
- Operations upto bleaching consumes about 40% of total water needed. Dyeing & printing another 25%.
- Boiler and humidification 25% and about 8% for sanitary applications.
 Most of these water comes out as effluent.

Water consumption in textile processing



Now, let us have a look at the effluent generated..

Characteristics of effluent from textile processing

QUIZ

What are the pollutants in textile effluents?

Pollutants in textile effluent

- Organic pollutants: residues of organic material used both as raw material and process ingredients.
- Salt: Most chemicals used in textile processing contributes to salts.
- Suspended particles: mostly fine fibers and residues of chemicals.
- Heavy metals & hazardous substances: Normally present in dyeing & printing chemicals and discharged in these effluents.
- Colour & temperature: caused by the remnants of the dyes & printing agents. The operation is done at high temperature.

Nature of pollutants in textile effluent - Inorganic

- Only small portion of chemicals used in manufacturing is consumed and most comes out in effluent.
- Alkalis, mineral acids, neutral salts (chlorides, sulphates, phosphates and silicates) and oxidizing agents like peroxides, chlorine and chlorine dioxide.
- Residuals of these chemicals mostly emerge as salts: direct salts or salts formed due to inter-reaction of alkali and acids,
- Other inorganic compounds in effluent include heavy metals in chemicals used in manufacturing.
- Major heavy metals: Copper, Chromium, Nickel, Zinc, Cadmium, Mercury, Antimony etc.

Nature of Pollutant in textile effluent-Organics

Medium organic load, but difficult to biodegrade

starch sizes, vegetable oils, fats and waxes, biodegradable surfactants, organic acids and reducing agents

High Organic load, but difficult to degrade

dyes and fluorescent brighteners, fibres and polymeric impurities, polyacrylate sizes, synthetic polymer finishes and silicons

Moderate to high organic load but readily degradable

wool grease, PVA sizes, starch ethers and esters, mineral oil (spin finish), surfactants, anionic /non-ionic softeners

Low organic load but very difficult to degrade

formaldehyde, N-methylol reactants, chlorinated solvents and carriers, cationic retarding and softening agents, biocides, sequestering agents.

Polluants in textile effluent: Colour & Odour

- Color not included in the Environment Conservation Rules specified by DoE, but it is an aesthetic issue
- Colour removal is generally difficult & often produces unwanted issues such as sludge to dispose.
- Textile effluent give foul smell if we keep it for some time. It is due to chemicals and due to degradation of organics and Sulphur containing compounds.
- Sulphur comes from sodium sulphate used in dying and some other Sulphur containing chemicals
- Sulphur degradation generates foul smelling (rotten egg smell) and poisonous hydrogen sulphide.

For common man, pollution is just colour and smell!

General pollutants in textile effluent - pH

- pH indicates how acidic or alkaline the wastewater is. pH is measure of hydrogen atoms present in the water.
- Pure water has pH 7 neutral. pH below 7 is acidic and above 7 is alkaline.
- Different effluent streams from textile processing are either acidic or alkaline.
- Composite effluent from cotton processing is generally alkaline - large quantity of caustic soda used in the process.
- To operate our ETP is satisfactorily, we need to bring down the pH, preferably in the range of 7.5-8.5 to allow microorganisms in ETP to strive.

General pollutants in textile effluent - Suspended Solids

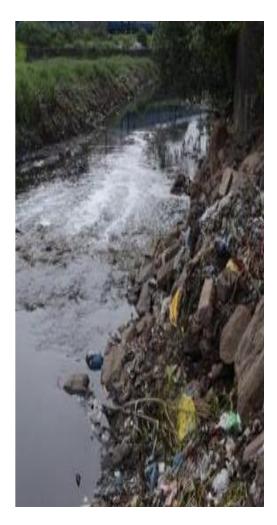
- Suspended solids in effluent is visible solid particles will settle in the bottom if we keep the effluent for long time.
- Textile effluent contains suspended solids, generated from minute fiber particles, remnants of chemicals used..
- The SS, especially the not readily degradable ones, need to be removed before aeration tank.
- This is because they will retard the growth of microorganisms and clog diffusers.
- SS will also settle in tanks and pipes and create blockages.

Pollutants in textile effluent - Total dissolved Solids

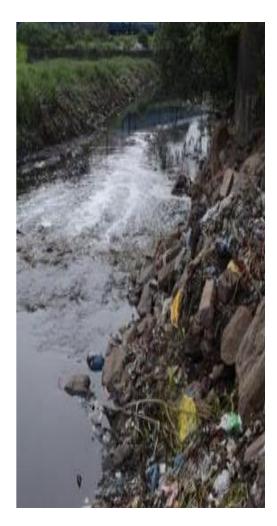
- Total dissolved solids (TDS) contributed by salts used in production, mainly dyeing.
- TDS is also contributed by salt generated through interreactions of chemicals used (acid and alkali).
- TDS may include both organic & inorganic compounds, generally it refers to only inorganic (fixed) salts.
- Most important TDS contributors sodium chloride and sodium sulphates used in dyeing process. Some chemicals like caustic soda & acid too reacts and produce salts.
- We may think: what is the big deal in having some harmless salt in the effluent? --- pollution due to salts are severe and long lasting, because unlike organics, inorganic salts does not get degraded over time.

Pollutants in textile effluent - non heavy metal hazardous compounds

- Cotton processing uses many organic chemicals which can also be hazardous.
- They include formaldehyde, N-methylol reactants, azodyes, chlorinated solvents and carriers, cationic retarding and softening agents, biocides (pentachlorophenol, organometal complexes, insecticides), sequestering agents (EDTA, NTA)
- Remnants of these chemicals are discharged along with the effluent and enters the ETP.
- Many of these compounds are also carcinogenic, i.e., cancer causing material when enters the human body.


QUIZ

What is the problem if the discharged effluent contains high BOD?


04-09-2023

Detrimental effects of pollutants: BOD

- Biochemical Oxygen Demand (BOD) is measure of bio-degradable organics in effluent.
- BOD is equal to oxygen consumed when organics in the effluent is degraded by micro-organisms.
- BOD is calculated by measuring oxygen consumed after 5 days at 20°C or 3 days in ambient temp-

Detrimental effects of pollutants: BOD

- Biodegradable organics in effluent is harmful. When BOD rich effluent joins water body, it reduces dissolved oxygen - essential for fish and aquatic life. If BOD is very high such discharge into river can cause death of fishes.
- BOD is also problematic due to its potential to degrade anaerobically when stagnated causing foul odour.
- Largest source of BOD in textile effluent is desizing effluents. Other streams too contribute to it.

General pollutants in textile effluent - organics: BOD

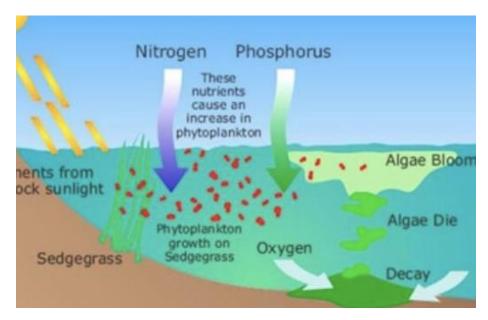
Detrimental effects of pollutants: COD

- Chemical Oxygen Demand (COD) is a measure of oxygen consumed by both organic and some inorganic compounds.
- COD include bio-degradable organics & will be higher than BOD.
- Like BOD, COD is harmful to environment because of its capability to reduce dissolved oxygen in receiving water body.

Detrimental effects of pollutants: COD

- COD is measured by oxidizing a measured quantity of effluent and then measuring oxygen consumed through chemical analysis.
- Almost all effluent streams in textile effluent contributes
 COD more by desizing, scouring and dyeing effluents.
- Unlike BOD tests which need 5 days (3 days minimum),
 COD tests can be done in 2 hours and is more accurate.
 Hence more operators take COD as the control parameter for ETP.

General pollutants in textile effluent - COD



Impact of pollutants in textile effluent - Nutrients

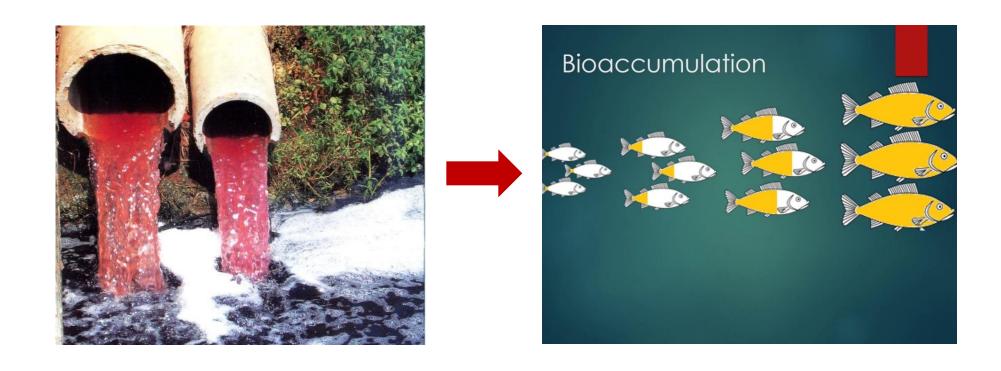
- Nutrients present in the textile effluent are Phosphorous & Nitrogen. Nutrients are also added in the ETP to facilitate biological treatment.
- Excess nutrients in effluent when reaches a water body create a problem called eutrophication.
- Eutrophication occurs when these nutrients produce excess algae,
- Excessive algae growth reduce light penetration & the lack of light stops photosynthesis making algae die in large quantity.
- Due to this all dissolved oxygen in the water is consumed by the decaying algae.
- Then fish & other aquatic life dies due to shortage of oxygen.

General pollutants in textile effluent - Nutrients

Impact of pollutants - heavy metals & hazardous compounds

- The colouring processes (dyeing and printing) uses chemicals containing heavy metals to impart the required colour.
- Almost all of these metals are discharged along with the effluent.
- Chemical precipitation in the ETP (primary ETP) removes a part of these metals which ends up in sludge.
- Due to the presence of these metals, the sludge from ETP is considered hazardous by most environmental protection agencies.
- Biological treatment does not remove heavy metals in effluent.
- So, in the first case part of the heavy metals end up in the sludge whereas in the second, it flows out along with the treated effluent.

Pollutants in textile effluent - heavy metals



The following metals are listed in the national environmental quality standards for industrial wastewater and sludge:

- Cadmium
- Chromium
- Manganese
- Copper
- Iron
- Lead
- Mercury
- Boron
- Nickel
- Selenium and
- Zinc.

Heavy metals can be toxic to humans, plants, fish and other aquatic life. They are capable of bio-accumulating in fishes and then reach humans in higher quantities.

Bioaccumulation of heavy metals & hazardous compounds

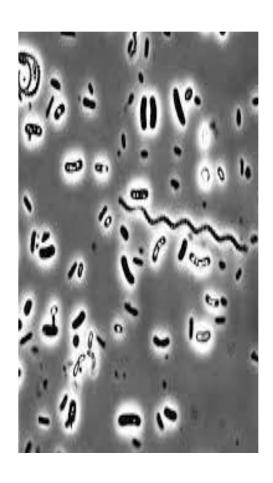
Pollutants in textile effluent - High Temperature

- Many of the processes in the cotton processing such as scouring, bleaching & dyeing is done at high temperature.
- The composite raw effluent comes out at a high temperature (often > 60°C). Hot water creates thermal pollution.
- Dissolution of oxygen in water is dependent on temperature of water. Higher the temperature, lower the solubility of oxygen.
- If the hot water joins a water body, the dissolved oxygen in that water falls drastically and kills aquatic life.
- Also, high temperature (i.e, say >40°C) affects activity of microorganisms. Hence cooling towers are often used in ETP after equalization to ensure effectiveness in all-biological ETPs.

QUIZ

Can there be a problem if the treated effluent has high salts?

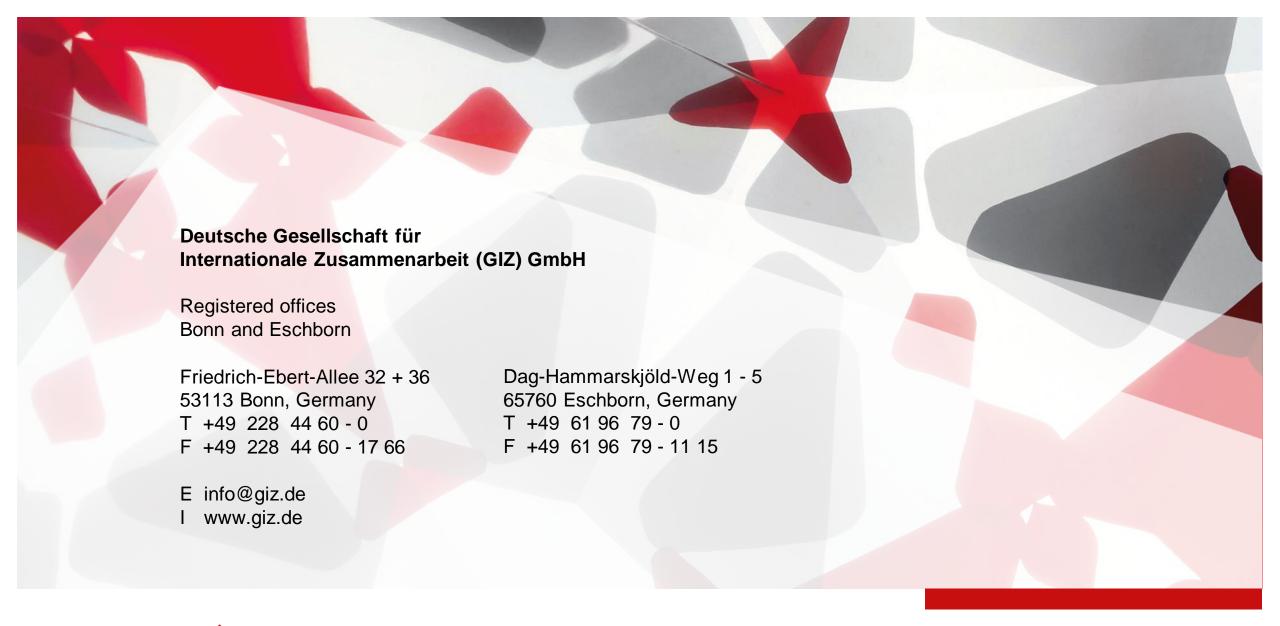
Pollutants in textile effluent - Total dissolved Solids



- Most international environmental standards fix upper limit of TDS as 2100 mg/l in treated effluent, 1000 mg/l for chloride (600 mg/l if discharge s into land) and 1000 mg/l for sulphate.
- For marine discharge, TDS limit is normally not insisted upon.
- High TDS in water makes it unfit for drinking. The desirable limit of TDS in domestic water is less than 500 mg/l.
- Sodium salts increases blood pressure and high salt level contributes to many health issues including kidney damages.
- Salt rich water is also unsuitable for construction.
- High TDS in water is also detrimental to vegetation. Many crops
 & plants can have stunted growth and lower yield.

High salt concentration cause stunted growth of vegetation

Effect of Pollutants - non heavy metal hazardous compounds



- Being less biodegradable, these organic compounds do not show much BOD, but show COD or Total organic carbon readings.
- Due to the above reason, they are not easily removed in biological treatment.
- But if the ETP operator succeeds to maintain a steady level of these compounds in effluent and keep a high MLSS in aeration, the bacteria which can degrade these would form naturally and removes these toxic organics.
- This process involves 'acclimatization' of bacteria with these organic compounds, *persuading* the bacteria to 'eat' it though it is not a favourite food for them.

Conclusion

- It is very evident that textile effluents are high in almost all kinds of pollution parameters.
- The effluent is rich in pollutants such as colour, odour, organics, heavy metals, inorganic salts, toxic compounds.....etc.
- Hitherto the focus of effluent treatment was mostly limited to removal of colour and treat the organics.
- Issue of heavy metals, hazardous compounds and salt is getting more attention of late.
- Control of these pollutants need a comprehensive approach and more information on adverse impacts.

