
# Master Training Program on Water (Water Supply, In-house Processing, End-of-Pipe) in Textile and Garment factories

Promotion of Sustainability in the Textile and Garment Industry in Asia - FABRIC







## Day-06 : End of Pipe







Day 6: Presentation 1

# **Textile effluent Treatment**





Contents

pollutants in textile effluent
 Ill effects of pollutants

) Typical effluent treatment steps

Management of sludge

**)** Treated wastewater quality

#### Pollutants in textile effluent





- Organic pollutants: residues of organic material used both as raw material and process ingredients.
- Salt: Most chemicals used in textile processing contributes to salts.
- Suspended particles: mostly fine fibers and residues of chemicals.
- Heavy metals & hazardous substances: Normally present in dyeing & printing chemicals and discharged in these effluents.
- Colour & temperature: caused by the remnants of the dyes & printing agents. The operation is done at high temperature.

## Organic pollutants in textile effluent



| Contributors                                                                                                                                         | Organic load | Degradability |
|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------|---------------|
| Starch sizes, vegetable oils, fats and waxes,<br>biodegradable surfactants, organic acids<br>and reducing agents                                     | Medium       | Moderate      |
| Dyes, fluorescent brighteners, fibres and<br>polymeric, polyacrylate sizes, synthetic<br>polymer finishes and silicons.                              | High         | Difficult     |
| Sizes, starch ethers and esters, mineral oil (spin finish), surfactants, anionic /non-ionic softeners                                                | Medium       | Ready         |
| Formaldehyde, N-methylol reactants,<br>chlorinated solvents & carriers, cationic<br>retarding and softening agents, biocides,<br>sequestering agents | Low          | Difficult     |

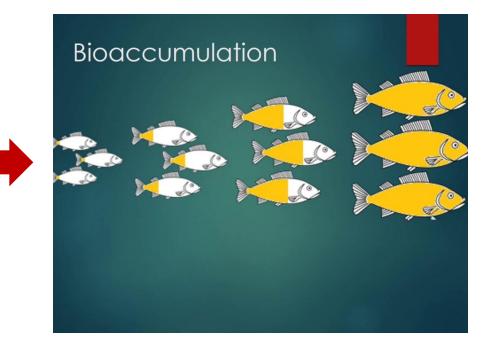
#### Inorganic pollutants in textile effluent



- Only small portion of chemicals used in manufacturing fully consumed; balance released in effluent.
- Chemicals including alkalis, mineral acids, neutral salts (chlorides, sulphates, phosphates and silicates) and oxidizing agents like peroxides, chlorine and chlorine dioxide.
- Other inorganic compounds in effluent including heavy metals in chemicals used in manufacturing.
  - Copper, Chromium, Nickel, Zinc, Cadmium, Mercury, Antimony
- Residuals mostly emerging in form of salts, either as direct salts or salts formed due to inter-reaction of alkali and acids

## Ill effects of pollutants in textile effluent

| Pollutant                           | Effects                                                                                                                                                 |
|-------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|
| Organic pollutants                  | consuming oxygen in receiving water body, dangerous to aquatic life; generating foul odour on stagnation                                                |
| Salts                               | serious pollutant, persistent and difficult to treat, affecting                                                                                         |
|                                     | <ul> <li>vegetation growth if high in irrigation water.</li> <li>Health, when high concentration in drinking water.</li> <li>aquatic biology</li> </ul> |
| Suspended particles                 | deposited in discharge bodies and silts channels, creating blockages                                                                                    |
| Heavy metals & hazardous substances | Highly toxic, chance of undergoing bio-magnification in fish, causing diseases including cancer                                                         |
| Colour & temperature                | reducing aesthetic quality of recipient water, affecting natural bio-system                                                                             |
|                                     | Temperature reducing dissolved oxygen in water and affecting aquatic life                                                                               |








#### Bioaccumulation of heavy metals & hazardous compounds











# What are the pollutants in textile effluents?



#### TYPICAL WASTEWATER TREATMENT STEPS



## **Common units in Effluent Treatment**

| Unit operation               | Functions                                                                                                                          | Common unit                           |
|------------------------------|------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|
| Screening                    | <ul> <li>Removal of large particles (suspended or floating)</li> </ul>                                                             | Manual/mechanical screens             |
| Grit Removal                 | <ul> <li>Removal of sand like materials from the effluent.</li> </ul>                                                              | Grit chamber                          |
| Equalization                 | <ul><li>Homogenizing the characteristics of the effluent</li><li>Flow balancing.</li></ul>                                         | Equalization tank<br>Aerators, mixers |
| Coagulation/<br>flocculation | <ul> <li>Facilitating settling of colloidal solids &amp; allowing the<br/>small solids to join together to form sludge.</li> </ul> | Flash mixer & flocculator             |
| Primary settling             | Removal of part organic/inorganic settleable solids                                                                                | Primary clarifier/tube settler        |
| Biological treatment         | Removal of organics using microbial action                                                                                         | Aeration tank                         |
| Secondary settling           | <ul> <li>Settling of bio-sludge, enabling biomass inventory</li> </ul>                                                             | clarifier                             |
| Tertiary treatment           | <ul> <li>Removes suspended solids/increase dissolved<br/>oxygen</li> </ul>                                                         | Multigrade filter & aeration          |
| Sludge dewatering            | Reducing moisture of liquid sludge to dried sludge                                                                                 | Sludge filter press/centrifuge        |
| Sludge maturation            | Reducing moisture of dewatered sludge further                                                                                      | Sludge storage.                       |

#### Treatment of textile effluent



Preliminary treatment: mainly screening, grit removal & equalization

Primary treatment: Coagulation, flocculation & solids separation

Secondary treatment: removes organics using micro-organisms

Tertiary treatment: polishing treatment and/or recovery & re-use



## **Common types of treatment set-ups**

#### **Primary ETPs**

 Common set-up in effluent treatment plants, often combined polishing using tertiary treatment

#### **Combined ETPs**

 Popular set-up, combining primary treatment followed by biological treatment

#### Full biological treatment ETPs

 New trend for medium/large ETPs. The main justification is lower quantity of sludge generation.

#### **ETPs with membrane systems**

- Set-up found in many new effluent treatment plants, consisting of membrane bio-reactors for biological treatment;
- some with recovery & recycle systems and even zero liquid discharge.





## **Common types of treatment set-ups**

#### **Physico-chemical treatment**

 Common set-up in effluent treatment plants, often combined polishing using tertiary treatment

#### **Physico-chemical and biological treatment**

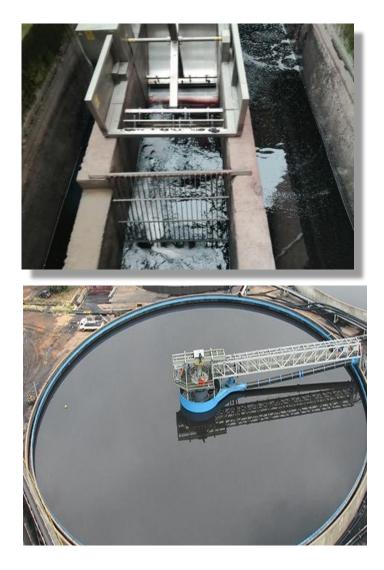
 Popular set-up, combining primary treatment followed by biological treatment

#### **Full biological treatment**

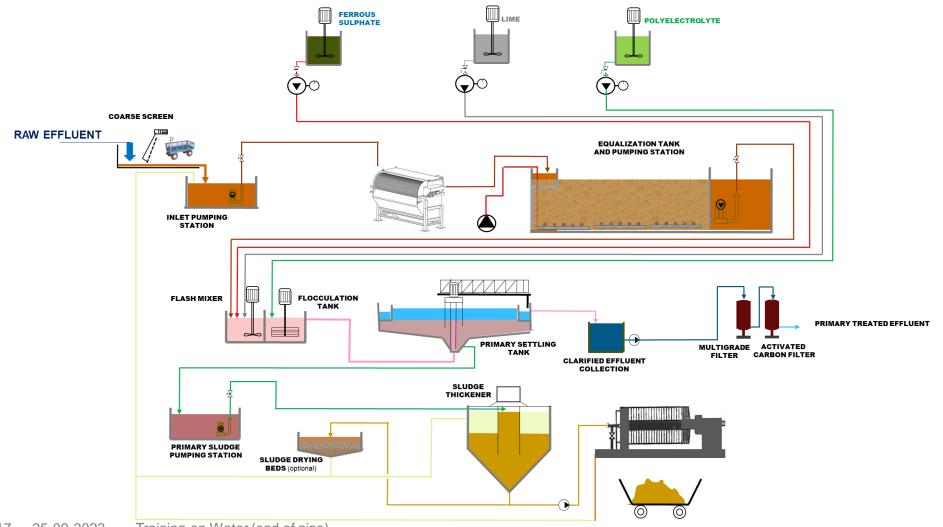
 New trend for medium/large ETPs. The main justification is lower quantity of sludge generation.

#### Treatment set-up with membrane systems

 Set-up found in many new effluent treatment plants, consisting of membrane bio-reactors for biological treatment; some also incorporating recovery & recycle systems and even zero liquid discharge







## **Physico-chemical treatment**

Typical elements of stand-alone physico-chemical treatment plant

- Screening system
- Equalization unit
- pH control unit
- Chemical storage tanks
- Chemical mixing unit,
- Coagulation and flocculation unit
- Settling unit and
- Treatment sludge dewatering unit

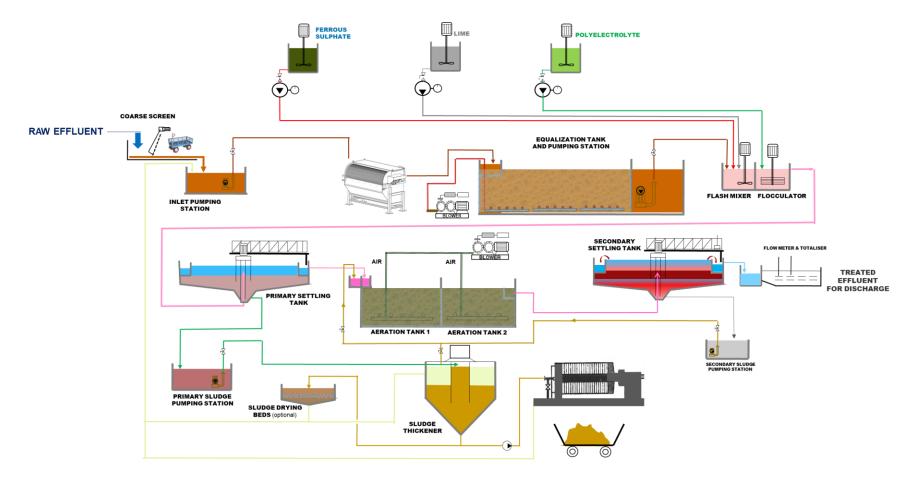


## II. Typical wastewater treatment steps



gíz

## **Combined treatment plant**


Typical elements of combined physico-chemical and biological treatment plant

- Screening
- Equalization unit
- pH control unit
- Chemical preparation tanks
- Mixing units including coagulation and flocculation units
- Primary settling unit
- Aeration unit
- Secondary settling unit
- Sludge thickener and sludge dewatering unit
- Sludge maturation/disposal arrangement 18 25-09-2023 Training on Water (end of pipe)



## II. Typical wastewater treatment steps

#### Physico-chemical and biological treatment combination



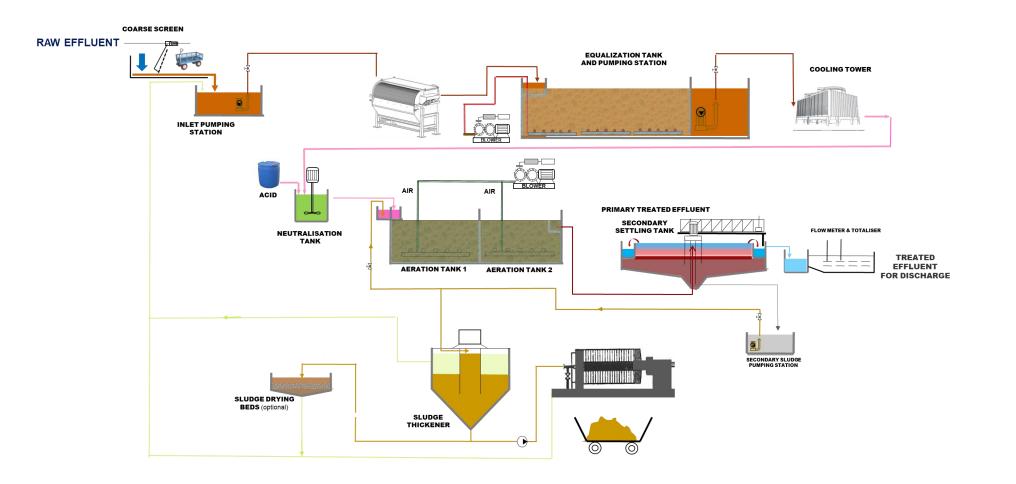
## **All-Biological Treatment Plant**

- Increasingly preferred option for treatment of textile wastewater in Bangladesh
- Preferred because of less sludge generation compared to systems with physico-chemical or combined physico-chemical and biological treatment
- Higher land requirement and power requirement main drawbacks
- Need for neutralization and cooling of equalized effluent before aeration
- Neutralization often done using sulphuric acid at inlet of aeration tank; recommended to equip with auto pH correction
- Cooling using cooling towers, either commonly with conventional towers or with heat exchanger type cooling systems





## **All-Biological Treatment Plant**


Typical elements of fully biological treatment plant

- Screening
- Equalization unit
- pH control unit
- Cooling tower
- Aeration unit
- Secondary settling unit
- Sludge thickener.
- Sludge dewatering unit
- Sludge maturation/disposal with conventional towers or with heat exchanger type cooling systems



## II. Typical wastewater treatment steps

#### Full/all biological treatment units



giz

## **Biological Treatment Concept**

Mainly for organics removal with high biological or chemical oxygen demand (BOD/COD), using anaerobic or aerobic approaches

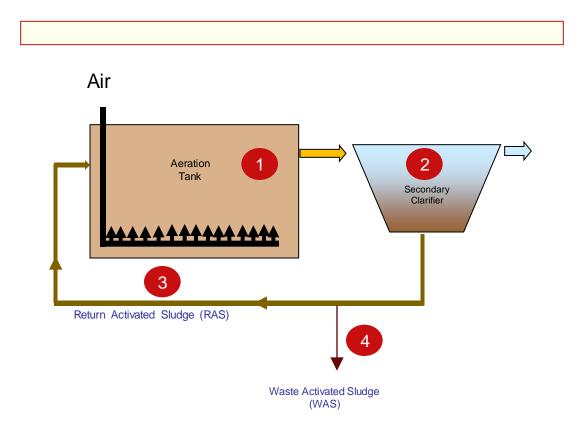
#### Anaerobic:

- Organic matter being converted to carbon dioxide and methane
- not common for textile effluent (except de-sizing effluent)
- common systems: Anaerobic lagoon, digestors or upflow anaerobic sludge blanket (UASB) systems

#### Aerobic:

- Outcome water and carbon dioxide
- Early systems with trickling filters (not common now); new version using rotating biological contactor (RBC)
- Common systems: Activated sludge process with rectangular and deep aeration tanks or oxidation ditch
- Variations: Membrane bio-reactor (MBR), sequential bio-reactor (SBR) and moving bed bio-reactor (MBBR).






## **Biological Treatment Concept**

#### Activate sludge process

involving development of bio-sludge, consisting of microbial clusters, kept in suspension and distributed in aeration tank

- Incoming effluent mixed with activated sludge and aerated for treatment in aeration tank
- Aeration by mechanical action or diffusing air through aeration tank.
- Bio-sludge settling in secondary clarifier and overflow being discharged as treated effluent.
- Separated bio-sludge returned to aeration tank to maintain required quantity of bio-sludge
  - Some excess bio-sludge wasted to keep biosludge fresh and healthy





## TYPICAL AERATION SYSTEMS

#### **Surface Aeration systems**

- Surface aeration system can be floating aerators or fixed aerators. Oxidation ditches has got surface aerators in the form of cage rotors.
- Here aeration occurs due to entrainment of air in water while splashing.
- Aspirators forcing air through water is another surface aeration system.



**Floating aerator** 



**Fixed aerator** 



#### Surface Aeration systems

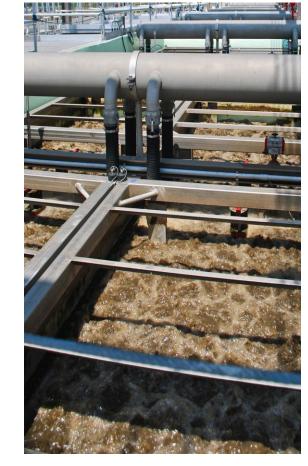
- The most common submersible aerators is diffused aeration. In this system, air is sparged from tank bottom and oxygen gets dissolved in water while air passes through the water column.
- Diffused aeration can be fine bubble or medium/coarse bubble systems.
- Ejectors pump water with air & water in the bottom and turbine aerators distribute air in the bottom mixing water.



**Fine bubble diffused aerators** 






#### **REQUIREMENTS OF ETPs**

#### Space

- ETP needs considerable amount of space. Higher the capacity higher area needed. Few tanks be constructed underground, most need open area.
- Primary ETP with polishing needs lowest space, not so efficient, need more chemicals, produces more sludge.
- All biological treatment need maximum space: Less sludge, better efficiency.

#### Power

- ETP need power mostly for aeration in equalization and aeration tank.
   Pumps, filter press etc. too consumes power.
- Primary ETP- lower power, 0.4 -0.6 kWh per cubic meter of effluent treated.
- Combined ETP about 0.8-1.2 kWh per cubic meter of effluent
- All biological ETP -1-1.4 kWh kWh per cubic meter of effluent



#### Manpower

- ETP needs manpower in the form of ETP in-charge, chemist, operators and casual labor for cleaning, chemical loading etc..
- In small ETPs, the ETP in-charge doubles up as Chemist and general shift operator too.
- A typical 1 MLD primary & combined ETP may need 6-8 staff and 4-5 part time labor. 1 MLD all-biological ETP need 4-6 staff and 1-2 labor.

#### Monitoring

- The success of ETP depends on proper monitoring to large extent.
- Monitoring involve
  - checking & controlling operational parameters like chemical dosages, cleanings.
  - Biological parameters like dissolved oxygen, MLSS, nutrients, SVI, RAS/WAS etc.
  - performance parameters, i.e, quality of effluent at different treatment points.



30 25-09-2023 Training on Water (end of pipe)

## Management of ETP sludge

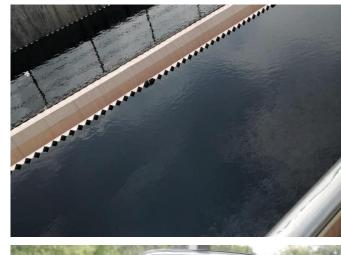


- ETP generates three types of sludge: primary, secondary and tertiary treatment sludge.
- Primary sludge, two categories: generated with chemicals & without chemicals.
- Secondary sludge is excess activated biomass, purposely wasted.
- It is from (a) inorganic portion of inlet suspended solids + (b) residuals of COD removed in the biological treatment
- Tertiary sludge: tertiary chemical precipitation from softening, colour removal etc.
- In most of ETPs sludges are combined together for treatment and disposal.



## Sludge management requirements




- Discharge of liquid sludge is universally prohibited by law.
- Even after drying, solid/semi solid sludge need special disposal requirements.
- Most countries regard sludge from textile effluent treatment as 'hazardous' or 'restricted' categories.
- This is mostly due to the presence of heavy metals and in some cases toxic organics.
- Many countries specified limits for heavy metals beyond which the sludge is categorized as 'hazardous'.
- Some countries allow conversion of sludge with heavy metals within limit into products (compost, bricks etc.) most do not.





## MANAGEMENT OF TREATED EFFLUENT

#### Quality of treated effluent





- Clearly, the treated effluent quality will depend on the type of treatment.
- Generally, the Bangladesh ETPs do conform to the norms of DoE.
- The effluents commonly have some reddish colour, has BOD around 30-50 mg/l, Total dissolved solids (TDS) about 2000 mg/l.
- In factories which adopted strict water conservation, the TDS value are higher, say upto 4000- 5000 mg/l.
- Mostly, the suspended solids are very low, but occasional sludge bulking may increase it at times.
- The treated effluent may also contain some small quantity of heavy metals.

#### Disposal of treated effluent





- Most of the textile factories in Dhaka discharges treated effluent into rivers, more into River Turag.
- As such, the treated effluent does not offer much re-use potential.
- Even with some tertiary treatment such as oxidation or filtration, recovery & reuse in textile operations are not viable.
- This is because textile processing need high quality water and any degraded water may affect quality control.
- Treated effluent after polishing treatment may be used in floor washing, toilet flushing, gardening etc., but requirement is less.



## Conclusion

- It is very evident that textile effluents are high in almost all kinds of pollution parameters.
- The effluent is rich in pollutants such as colour, odour, organics, heavy metals, inorganic salts, toxic compounds.....etc.
- Earlier the focus of effluent treatment was mostly limited to removal of colour and treat the organics.
- Issue of heavy metals, hazardous compounds and salt is getting more attention of late.
- Primary, all-biological and combined ETPs are being installed, which generally conforms to the standard of DoE.
- Disposal is mostly to River Turag.
- Need extensive additional treatment to consider any recovery & reuse.

Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH

Registered offices Bonnand Eschborn

GIZ Bangladesh PO Box 6091, Gulshan 1 Dhaka 1212, Bangladesh T +880 2 5506 8744-52, +880 9666 701 000 F +880 2 5506 8753 E giz-Bangladesh@giz.de I www.giz.de/bangladesh

