Water saving in Textile and Garment factories (Dyeing, Washing and Finishing)

Promotion of Sustainability in the Textile and Garment Industry in Asia - FABRIC

Day 4: Presentation 2

Water Saving– Denim dyeing

Mohammad Abbas Uddin Shiyak, PhD, CText FTI

Assistant Professor and Head Department of Dyes and Chemical Engineering Bangladesh University of Textiles

Md Anwarul Islam, MSc Consultant, Reed Consultancy

Contents

Contents

Denim dyeing

- ✓ Rope dyeing
- ✓ Slasher dyeing

Water saving opportunities

Learning Outcomes

-`Q.

At the end of this module, you will be able to

- Understand the denim dyeing process
- assess possible changes and impacts in process steps and production technologies
- apply process specific low water consumption technologies

Denim dyeing process

Fundamentals of Denim

- Denim is a type of woven fabric predominantly a 3/1 warp faced twill but also produced from weaves like: Left hand twill, right hand twill, broken twill, cross hatches, cords, dobby's, structures
- Denim is dominantly made of cotton fibers and in some cases, it is blended with other types of fibers to add special features.
- Usually 4 oz. to 16 oz. / sq.yds in weight
- It is a rugged and sturdy fabric in feel.

Flow chart of Denim production

Fundamentals of Denim dyeing

- Warp yarn is coloured
- Colour may be blue, black, green or it's variation
- Weft yarns are always in its natural color
- A Surface Dyeing technique where colors are only attached on the surface of the fabric or yarn instead of getting into to the core of the yarn/fabric
- Assists in easy fading during garment wash

Fundamentals of Denim dyeing

- Mostly water insoluble indigo or sulphur dye are used
- Soluble-Oxidation-Insoluble on the surface
- Reducing agent, alkali, and oxidizing agent (e.g. air)
- pH, amount of reducing agent, immersion time, temperature, oxidationtime

Colour of Denim

- Indigo blue
- Indigo black
- Sulfur black
- Sulfur black bottoming indigo topping
- Indigo bottoming –Sulfur black topping
- Sandwitch Sulfur black-indigo-sulfur or vice versa

Bottoming Effect (Sulfur Dye + Indigo)

Topping Effect (Indigo + Sulfur Dye)

- Slasher/ Open warp/ Sheet dyeing
- Rope/Ball warp/ Chain dyeing

- The warp yarns are passed through a special comb and lease rods and wound in the form of ropes in ball warp.
- The rope length generally remains up to 2500 meters. Each rope contains 350-400 ends.
- Machine capacity is up to 36 ropes and 14400 threads depending on the size and the width.
- The ropes are dipped into 6-8 dye baths.
- Multiple dipping of the ropes are carried out for ensuring better penetration.
- Skying of the ropes are carried out after each dip for air-oxidation. The shade is built up due to this.
- The yarn count ranges from 1-16 Ne

Here Washing boxes - Dry cans - Dry cans -

Coilers

44

**

_

Rope Dyeing

Advantages	Disadvantages
No cross-shade variation	A lot of space is required
Wastage of thread is low	Immersion time and oxidation time is comparatively higher
Productivity is high and flexible production	An additional step of opening ropes after dyeing is necessary
Less reducing agent consumption	Less flexibility in changing color
No time loss during lot change	The production cost is high
Versatility in denim production	

Creeling for Rope beam

Winding with Automatic slicing in Denim

Ball Roap beaming

Ball stockers

- up to 42 beams can be stocked. With automatic loading and unloading

up to 42 ropes can be dyed together, which in turn can make 3 beams from 14 ropes each

Rope Dyeing Machine

Morrison

Rope Dyeing Machine

Karl Mayer

up to 42 ropes can be dyed together, which in turn can make 3 beams from 14 ropes each

Process Optimisation – Denim Dyeing

Shade check at the floor – Rope by rope in light box

42 tray/container with 42 ropes coming out after dyeing

Rope dyeing machine

Airing in Rope dyeing

Softener followed by calendaring

Calendaring machine

Rebeaming machine

Rebeaming machine

- 6-10 dye-baths per vat. Less time is required as each yarn is independently subjected to treatment.
- Warp beams supply warp yarns. The machine capacity is 9500 warp yarns having 300-750 warp yarns per beam.
- Yarn count and denim fabric design determine the number of total warp yarns.
- The yarn count ranges from 1-30 Ne.

- Linked with slasher -

0

0

00000

Yarn

-11

Advantages	Disadvantages
Less space is required due to compact design	Possibility of cross-shade variation
Oxidation and immersion times are less	Possibility of yarn rupture
Continuous process	Productivity and flexibility in production are low
Flexibility in changing color	Extra time needed for lot change
Production cost is low	No versatility in denim production
	Reducing agent consumption is high

Slasher dyeing machine

Slasher dyeing machine

Slasher dyeing machine

Liquor Circulation tank in slasher machine

Three chamber washing as grey stage

Three chamber washing as grey stage

Three chamber washing as grey stage

Three chamber washing after dyeing

Singeing plus sanforising machine

Mercerising machine

Stenter machine

Water efficiency – Four ways

- Common Good practices
- Machine modification
- Chemical use
- Process modification

Common good practices

Drainage of washing liquid around 50C hot

Photo Credit: Mohammad Abbas Uddin

Calendaring machine – Cooling water goes to WTP

Machine modification

Using 1000 L trough instead of 3000 L depth

Counter current washing

Change of chemicals

- Using chemical like Asufix that improves the fixation
- Effective desizing that requires less wash
- Reuse of liquid indigo/sulphur

1000 L indigo tank

Photo Credit: Mohammad Abbas Uddin Process Optimisation – Denim Dyeing

Circulation tank

It is level with padding trough and always circulating. Indigo/dye are fed into the hopper and through the pump fed into the tank in certain concentration, which is controlled by control panel in the lab. The dosing is set through the control panel. In this way, the concentration in the padding trough kept constant.

Circulation tank of indigo

Control panel – controls dosing of production machinery

Reservoir for liquid return

Reuse of hydrose and colour

Liquid spectrophotometer for concentration measurement

Autotiration to calculate residual hydrose and indigo directly in gpl

Process modification

Padding – Dye solution spray

More add-on liquor

- Ring dyeing rather than penetration
- Increasing number of dipping
- Or increasing dipping time.

Airing

Airing height kept 20-30 fit high to increase the oxidation time, which will offer increased fixation before moving into the next trough for dipping

Conclusion

Key points to consider

- Denim dyeing is similar to woven dyeing or special as in Ball dyeing
- Water can be saved in various ways including machine and process modification
- Counterwashing technique in washing system
- Reuse of colour liquor is important for reduction of water use
- Process control could enhance right first time colour, hence water saving

- <u>https://www.textiletoday.com.bd/coloring-the-denim/</u>
- <u>https://www.textileblog.com/production-strategy-slasher-dyeing-rope-dyeing-denim/</u>
- Clean By Design: https://www.nrdc.org/resources/green-textile-redux-clean-designs-10-best-practices-offer-even-greater-pollution-reduction
- Handbook of Textile and Industrial Dyeing, Vol 1, Woodhead Publishing

Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH

Registered offices Bonn and Eschborn

Friedrich-Ebert-Allee 32 + 36 53113 Bonn, Germany T +49 228 44 60 - 0 F +49 228 44 60 - 17 66

E info@giz.de I www.giz.de Dag-Hammarskjöld-Weg 1 - 5 65760 Eschborn, Germany T +49 61 96 79 - 0 F +49 61 96 79 - 11 15

