
Introduction to ETP Monitoring

GIZ FABRIC – ETP Operator Course

Monitoring of different parameters

Contents

Presence of required bacterial population to be ensured through appropriate monitoring

Role of monitoring:

ETP manager and lab chemist

ETP Manager sometimes doubling as chemist

Role of obtaining correct data/monitoring:

Operator

- Correct wastewater sampling
- Recording data collection from online monitoring

Correct and representative sample needed

to avoid misguiding ETP operation control!

Parameters impacting ETP performance

- (1) Operational parameters such as operation times of equipment
- (2) Wastewater quality parameters at various stages of treatment process
- (3) Process control parameters such chemical dosing, pH, temperature, MLSS, RAS/WAS, nutrient dosing
- (4) Operational problems, solutions adopted and maintenance features
- (5) Inventory such as chemical stocks, spares and reorder quantities
- (6) Expenditure (checking costs of treatment)

Need of ...

- continuous monitoring
- proper **notation** of ETP equipment's **operation time**

Continuously operated units

versus

- Aerators
- Blowers
- Clarifiers
- Return sludge pumps, etc.

Intermittently operated units

- Raw effluent pumps
- Screens
- Cooling tower
- Chemical preparation units
- Sludge dewatering

Recording of switch-on and switch-off incidences

To ensure sufficient utilization and absence of over- and under-operation

- for continuous operated equipment changing between main and standby units be recorded.
- the operator to
 - carry out above monitoring
 - record observations
 - review them.

Documentation of operation time

- To assure management or regulatory agencies about continuous ETP operation
- To provides assurance to consultant or auditor of proper operation and maintenance
- To reveals health of ETP

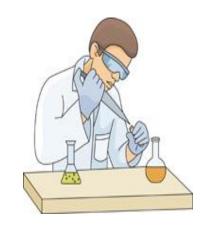
Examples for testing proper time

- Monitoring whether
 - return sludge pump operating for 24 hours
 - chemical dosing started only after sufficient mixing
 - filter press in operation for longer than usual cycle time

Wastewater monitoring

Main types of wastewater monitoring:

1. On-site monitoring


Checking at site itself (e.g. pH, DO)

2. Off-site monitoring

 Checking of collected wastewater samples in in-house or external laboratory

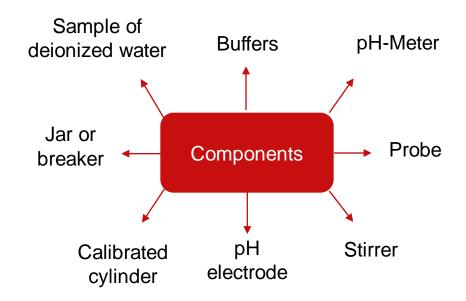
3. Online monitoring

Continuously checking (from within or outside ETP)

ETP operator involved in all types of monitoring operations

On-site monitoring

- Checking of certain parameters
 - Parameters changing in case of delayed testing
 - Parameters impacting immediate treatment control and needing regular checking
- **Testing equipment to**
 - be portable
 - be simple to operate
 - give immediate readings


On-site monitoring - Examples

- Dissolved oxygen (DO)
- Tested with **portable** (preferred) or **fixed DO meter** with laboratory check (see Winkler's method)
- Spot measurement of toxic gases
- Tested with H2S meter
- Temperature check
- Tested with thermometer
- pH value for treatment control
- Tested with pH meter or paper

On-site monitoring – Usage of pH meter

17

On-site monitoring – Usage of pH meters

Preparations

- Take calibrated breaker and pour 100 ml water to be tested
- Switch on pH meter to warm up

Step 1:

- Rinse electrode with distilled water,
- Shake off any excess fluid on the device before placing in sample liquid or water.

18

On-site monitoring – Usage of pH meters

Step 2:

- Place device in sample and press "measure pH button"
- Stable reading in about two minutes

Step 3:

- Take another reading for accuracy
- Rinse and dry electrode well.
- Clean electrode after use and keep stored.

On-site monitoring – Calibration of pH meters

Step 1 - Preparation

- Remove electrode from storage solution (potassium chloride)
- Rinse with deionized water and pat dry with wipe

Step 2 - Calibration to pH 7.00

- Clear previous calibration by pressing setup and enter
- Immerse electrode in fresh pH 7.00 buffer
- Stir without allowing stir bar to hit electrode
- Let pH reading stabilize and press standardize

Meter recognizes as pH 7 buffer and displays calibration scope of 100%

On-site monitoring – Calibration of pH meters

Step 3 – Calibration to 2nd buffer

- Remove electrode from pH 7.00 buffer, rinse & dry
- Immerse electrode in fresh 2nd buffer (pH 7/10) and stir
- Let pH reading stabilize S and press standardize

Step 4 - Finishing

- Rinse and dry electrodes
- Slide rubber sleeve to cover fill hole
- Return electrode to storage solution

Meter recognizing 2nd buffer and displaying new calibration scope

On-site monitoring – Calibration of pH meters

For consideration

Optimal calibration scope 95-100%

Acceptable calibration scope90-105%

■ **Meter errors** < 90% of >105%

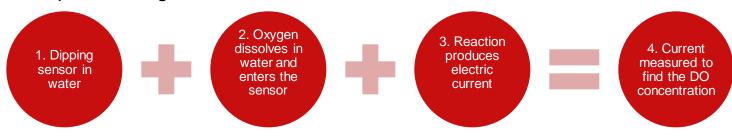
▶ pH meter calibration at least once every month!

On-site monitoring – Using pH paper

- Either as a role of paper or a strip of papers
- Color coded scale to compare color developed on paper with chart.
- Paper color changing when dipped in solution.
 - Change due to soluble chemical called Flavin in paper.
- Usual range from 0-14.
 - Turning red for acidic liquid
 - Turning greenish-blue for alkaline liquid.
 - Staying light green in neutral solution
- To be stored away from sunlight in dry and cool place

On-site monitoring – Dissolved oxygen

- Laboratory analysis (Winkler's method) preferred method
- DO meter convenient and fast method
- Types of DO meters:
 - Electro chemical
 - Measuring electric current generated by chemical reaction in meter
 - Optical
 - Measuring through change in color with dye layer.



On-site monitoring – Dissolved oxygen

Electro-chemical DO sensors:

- 2 types: Polarographic & galvanic (most common):
 - Galvanic sensor contains sensor with membrane only allowing gas to pass through

- easy to use and accurate
- need of flowing or stirred water and warm up time for measurement

On-site monitoring – Dissolved oxygen

Optical DO meters

Containing a dye layer in the electrode

- can use still water and giving steady results
- not consume electrodes and give steadier results
- new technology not approved for all applications

On-site monitoring – Dissolved oxygen

- Different calibration methods of DO meters in air and water
- General calibration procedure:
 - 1. Pressure correction or altitude correction if so specified.
 - 2. Put wet sponge into beaker.
 - 3. Allow saturated of air with water vapour for 10-15 minutes
 - 4. Place DO sensor just above sponge and press first calibration (100%).
 - 5. Place water in beaker, put '0 DO' tablet into beaker for zero dissolved oxygen
 - 6. Place DO sensor in beaker and press second calibration (0%).
 - After calibration: counter check with any sample for same value with result from Winkler's test

Q

Meter needs to be regularly calibrated to get reliable data!

On-site monitoring – Dissolved oxygen

- Different testing procedures
- General testing procedure
 - 1. Turn meter on by holding button for two seconds.
 - 2. Insert probe into wastewater sample bottle.
 - 3. Move probe to release any air bubbles and provide fresh sample to sensor cap
 - For galvanic sensors continuous stirring required (not for optical)
 - 4. Wait approximately 25-35 seconds for temperature and DO readings to stabilize.
 - 5. Record reading in mg/L in field logbook.
 - 6. Clean sensor using distilled water
 - 7. Conduct quick air check to verify calibration after testing

On-site monitoring – Settling Studies

- by ETP operator at least once in every shift
 - and whenever DoE officials visiting ETP
- Factors determining ETP health
 - Color of bio-sludge
 - Rate of settling
 - Clarity of supernatant
- Sludge Volume Index (SVI):
 - measurement of sludge volume settling in 30 minutes
 - to be checked at least once a week

Off-site monitoring

Activities involved

- Proper sampling of wastewater or sludge
- Preservation of samples to prevent quality changes
- Proper sample transport
- Laboratory analysis or safe storage

Off-site monitoring

Usual parameters

- for process management in addition to on-site tests
 - COD
 - pH
 - TSS
- stipulated by DoE for discharge of treated effluent
- Specified by environmental agencies or international buyers
 - heavy metals
 - Manufacturer restricted substances lists (MRSL)

Process control parameters

Chemical dosing control

- Most important process for primary ETP
- Dosages based on flow of effluent
 - Ferrous sulphate
 - Polyelectrolytes
 - Color removal agents
- Dosages based on pH values
 - Lime
 - Acid for neutralization

Chemical dosing control

- Dosages based on flow of effluent:
 - Check chemical slurry prepared in line with requirement (5% or 10%)
 - No change during entire process
 - Dosing of chemical slurry proportional to flow rate of effluent
- Dosages based on pH values:
 - Check pH after addition frequently
 - Counter check if automatic pH control available
 - Monitor pH at equalized effluent, chemically treated effluent and/or inlet of aeration tank at least once a shift

Temperature, RAS and WAS

- Temperature control at inlet of aeration tank to ensure right (low) temperature
- Rate of return activated sludge (RAS) flow:
 - To be monitored at least twice every shift
 - To be maintained at 100% of RAS in general
- Wasting of excess bio-sludge (WAS):
 - To be measured quantity wasted at fixed pumping rate several times using timer and bucket
 - Time of WAS pumping to be monitored

Nutrient addition to biological treatment

- Calculation of standard values of Urea and DAP dosages with respect to influent BOD
- Checking active nitrogen and phosphorous in DAP and Urea if possible
- Counter-checking of nutrient sufficiency once a week:
 - Collected samples from aeration tank checked for ammoniacal nitrogen/kjeldahl nitrogen and phosphates
- Checking of nutrient values in treated effluent once a month
 - No exceeding of limits specified

Factors leading to operational problems

- Non-consistency of input
- Variable nature of biological treatment being 'live' process
- Exposed nature of ETP
- High potential of corrosion

Common operational problems

- (1) Related to regular operation issues
 - foam in aeration tank
 - overflow of tanks
 - odor problems
- (2) Related to break down of any ETP equipment

Dealing with regular operation issues

- Clear any stagnated effluent, spill-overs
- Increase aeration
- Prevent any stagnation
- If not working, use oxidizing chemicals

Dealing with break down of any ETP equipment

- Switch over operation to standby unit
- Arrange immediate repair of affected unit
- Study external causes for failure
- Inform ETP or factory management in case of repeated unit failures

Examples

Problem 1: Excessive foaming

- Resort to water sprays to control foam
- Add anti-foaming agents

Problem 2: Overflow

Reduce feed to unit and/or increase output from unit

Problem 3: Odor

- "Immune" to smell and others only noting
- Take note of smell when entering the ETP
- Operator may ask visitor about unusual smells

Inventory monitoring

Inventory monitoring

Inventory monitoring

Importance

Necessary for continuously operating unit and maintaining sufficient spare parts

Different kind of stores

- Factory store
 - General spare parts
- ETP store
 - ETP chemicals
 - Spare parts
 - Imported chemicals with short life span

ETP OPERATOR COURSE - INTRODUCTION TO ETP MONITORING

Inventory monitoring

Responsibilities

- Large ETP: dedicated store-in-charge
- Small ETP: Operators under direction of manager

Tasks

- Keep track on spare part utilization and stocks
- Request inventory refill requests
- Verify cause of any item being consumed faster than expected
- Undertake remedial measures

Expenditure monitoring

ETP OPERATOR COURSE - INTRODUCTION TO ETP MONITORING

Importance

- ETP seen as non-productive asset for
 - environment protection
 - compliance with requirements of government
 - conforming to buyers' expectations
 - but no business benefit
 - Imperative to keep costs to minimum possible

Different types of costs in ETPS

- Fixed costs
 - Salaries
 - Depreciation on investment and equipment
- Variable costs
 - Power
 - Chemicals
 - Maintenance (highly variable)

Tasks for ETP management (including the operator)

- Prepare cost estimates for operation and maintenance based on generally accepted figures
- Compare actual costs of treatment
- Take corrective measures if needed

To remember

- Absence of proper monitoring and preventive maintenance often as cause of system failure
- Proper monitoring as pre-requisite for good ETP operation
- Need for clear monitoring plan with meticulous observation
- Operators responsible for regular checking of on-site parameters
 - Need for operator to check and record parameters once per shift
- Special attention to parameters affecting ETP performance

OPERATOR COURSE - INTRODUCTION TO ETP MONITORING

