TRAINING PROGRAMME FOR ETP OPERATORS IN TEXTILE INDUSTRY

Promotion of Sustainability in the Textile and Garment Industry in Asia - FABRIC

Introduction to sludge management

GIZ FABRIC – ETP Operator Course

Contents

Basic concept of sludge

Characteristics of different sludge types

Sludge treatment and disposal

Determining sludge quantities

ETP sludge

-solid, semisolid or slurry residual material

-by-product of wastewater treatment processes

Types of sludge

- -Differentiation by treatment stage
- -Primary sludge
- -Secondary sludge
- -Tertiary sludge

Primary sludge

- With or without chemicals
- Generated from chemical induced
 - Coagulation
 - Flocculation
 - Sedimentation

Secondary sludge

- Excess activated waste biomass after biological treatments
- Generated from:
 - Inorganic portion of suspended solids
 - Residuals of COD removed in biological treatment

giz

Tertiary sludge

- Result of tertiary chemical precipitation from treatment processes
 - softening
 - colour removal
- In most of ETPs sludges combined for further treatment and disposal
- Secondary sludge separated from others for its use if not deemed hazardous
 - Considered hazardous because of heavy metal presence

Basic concept of sludge – Hazardous elements

Heavy metals	Possible sources
Antimony (Sb)	 Cotton Caustic soda: Made by 'mercury cell process' in synthetic fibres Used in polyester synthesis as residues Antimony trioxide: Used as catalyst for application of certain flame retardants
Arsenic (As)	 Not contained in high-quality dyes and auxiliaries
Barium (Ba)	Synthetic fibres
Cadmium (Cd)	 Pigments and dyes Particularly red, orange, yellow and green Not contained in high-quality dyes and auxiliaries
Chromium (Cr)	 Dyes and pigments In metal-complex dyes: Blue, navy, turquoise, green and grey shades Not released if correctly bound to textile Used as oxidants in sulphur and vat dyeing processes Chrome present in chrome mordant dyeing (after chrome dyes)

Basic concept of sludge – Hazardous elements

Heavy metals	Possible sources
Lead (Pb)	 Dyes and pigments though not contained in high-quality dyes and auxiliaries
Mercury (Mg)	• Low risk of containing mercury. Not contained in high-quality dyes and auxiliaries.
Cobalt (Co)	 Found in metal-complex dyes; blue, navy, turquoise, green and grey shades; not released if correctly bound to textile
Copper (Cu)	 Dyes and pigments. Found in metal-complex dyes – blue, navy, turquoise, green and grey shades; not released if correctly bound to textile. Some copper compounds improve the light-fastness of polyamide-based carpets
Zinc (Zn)	Preservatives, finishing chemicals
Nickel (Ni)	 Blue, navy, turquoise, green and grey metal-complex dyes Turquoise and brilliant green shades in reactive dyes for cellulose

Characteristics of different sludge types

Primary sludge

- (1) Sludge or solids from preliminary treatment
 - Screenings
 - Grit separated from grit removers
- (2) Residual sediments from tanks:
 - Sludge removed during emptying and cleaning of tanks, manholes, pits
- (3) Sludge from physical treatment
 - Generated from pre-settling units where raw effluent held for medium duration (10-20 min)
- (4) Pre-settling not common in textile effluents
 - except where high suspended solids present

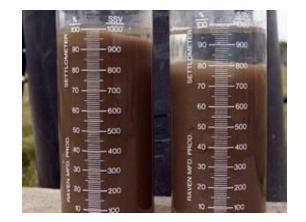
Primary sludge

- 90% of primary sludge generated in chemical treatment
 - Suspended solids in effluent treated in primary treatment
 - Precipitated mass from chemicals
- Portion of soluble material metals:
 - Converted into their insoluble forms (hydroxides)

Primary sludge

Characteristics

- Sludge from preliminary treatment mostly dry
 - After draining 30-40% moisture content
- Sediments cleaned from tanks (e.g. equalisation tank during emptying) thick
 - Mechanically scooped if not pumped
- Pre-settler sludge medium thick with 2 3% concentrations
- Chemical sludge from primary sedimentation tank about 3-4%


Biological sludge

- From biological treatment
 - micro-organisms degrading organic materials in effluent
- Creation of bio-solids intermittent process stage
 - micro-organisms accumulate on biosolids (MLSS)
 - MLSS providing 'housing' and food for bacteria
- MLSS degraded continuously by micro-organisms, resulting in more 'mineralized' sludge.
 - Once mineralized microbial activity reducing
- For maintaining microbial MLSS to be refreshed by wasted MLSS

Biological sludge

- Excess bio-sludge = secondary sludge
 - mineralised organics and non-degraded suspended solids
- Part of MLSS flowing out with effluent as suspended solids in treated effluent
- Partial withdrawal as 'wasted activated sludge usually necessary

Biological sludge

Characteristics

Wasted sludge generally from activated sludge recirculation line

- **Concentrations**
 - MLSS in aeration tank: 3000-5000 mg/l or 0.3-0.5%
 - Returned sludge from settling tank 6000-10000 mg/l 0.6%-1%
- Solids concentration after withdrawing wasted sludge about 1%
 - Watery compared to primary sludge
 - Mostly dark-brown further degrading
 - Waste MLSS anaerobically putrefying and generating gas
 - sludge rising after 1-2 days

giz

- Sludge generated like watery slurry
 - Make fit for handling before discharge or disposal
- Reduce sludge moisture content by
 - Sludge thickening
 - Sludge dewatering to turn into dry cake

(1) Sludge thickening

- Gravity thickening
 - Most common
 - Simple operation
 - Low operating cost
- Mechanical thickening
 - 'Preliminary' mechanical dewatering

Gravity thickener

Proprietary mechanical thickener

(2) Sludge dewatering and drying

- Dewatered sludge still containing > 60% moisture
- Need for further drying:
 - Thermal drying to less < 10% moisture
 - Natural drying
 - Exposing sludge to air drying to < 20% moisture
 - Lengthy process (depending on season!)
 - Maturation process

(2) Sludge dewatering and drying

- Natural drying in sludge drying beds
 - Simple process by draining water and drying in sun
 - High land requirement
 - Inefficient during rainy periods

(29 Sludge dewatering and drying

- Mechanical sludge dewatering systems
 - Sludge filter press
 - Sludge centrifuge
 - Belt filter press
 - Screw compressors

Sludge filter press

Dewatered/matured sludge to be disposed safely

- Most textile ETP sludge to secure landfilling
 - Land availability and costs challenging
- Other options:
 - Composting
 - Bricketing
 - Direct incineration
 - High costs
 - Need for disposing ashes

Handling and disposal option depending of classification of sludge

- Textile effluent and sludge containing hazardous substances
 - sludge considered hazardous by most environmental protection agencies
 - sludge utilisation within safe limit
 - specified for different heavy metals
 - presence of carcinogens

Classification in many developing countries:

- Any sludge from industrial ETP effluent considered hazardous, even not containing any toxic or hazardous materials (!)
- Reason:
 - To avoid need of checking or permitting

BUT

In reality, textile effluent of different quality (e.g. dyeing or washing)

qiz

Secondary (biological) sludge (in some countries)

- allowed to be processed in composting or converted to construction material
- Subject to tolerance limits:
 - Specified for hazardous substances
 - Disposal options depending on concentrations

In Bangladesh:

Textile ETP sludge deemed hazardous as per DoE because of heavy metals

CAUTION HAZARDOUS WASTE

Sludge quantity depending on

- Technology used
- Type of effluent
- Size of ETP
- Operational parameters
 - -dosages maintained
 - -sludge age kept

Estimated sludge generation from screenings and grit:

- ETP with capacity of 1 MLD (1000 m3 per day)
- 15 20 kg per day (50% solids content)

Challenges

- Seasonal sediments from tank desludging not regular sludge
- Primary sludge generation depending on suspended solids and chemical dosages
- Combined sludge based on chemical dosages, suspended solids and COD removed
- Biological sludge based on COD removed in aeration and suspended solids in inlet/outlet.

Sludge from primary treatment (Example 1)

- Primary ETP with capacity 1 MLD
- 400 mg/I TSS
- Dosages maintained as
 - 200 mg/l ferrous sulphate
 - 100 mg/l of lime
 - 1 mg/l of PE

Source & assumptions	Quantity (kg/day)	Measure
From TSS (≈80% TSS removal)	320	Dry wt.
From chemicals used (assuming best quality chemicals)	120	Dry.wt
From precipitated material (incl. metals)	20	Dry.wt
Total	460	Dry.wt

Primary liquid sludge: 15.3 m³/d, ≈3% solids content

Dewatered sludge: 1.15 tons per day, ≈40% solids

Sludge from combined (Example 2)

- Primary ETP with capacity 1 MLD
- 400 mg/l TSS
- Dosages maintained as
 - 200 mg/l ferrous sulphate
 - 100 mg/l of lime
 - 1 mg/l of PE
- COD
 - Inlet to aeration tank as 800 mg/l
 - Outlet at 200 mg/l

Source & assumptions	Quantity (kg/day)	Measure
From TSS (≈80% TSS removal) + precipitated metals	340	Dry wt.
From chemicals used (assuming best quality chemicals)	120	Dry.wt
Aeration tank excess sludge (SS removed * 0.3 + COD removed* 0.2)	132	Dry.wt
Total	592	Dry.wt

Primary liquid sludge: 19.7 m3/d, ≈3% solids content

Dewatered sludge:1.48 tons per day, ≈40% solids.

Sludge from biological ETP (Example 3)

- Primary ETP with capacity 1 MLD
- 400 mg/l inlet TSS
- Treated effluent 40 mg/l
- COD
 - Inlet to aeration tank as 800 mg/l
 - Outlet at 200 mg/l
- Colour removal agent dosage 50 mg/l

Source & assumptions	Quantity (kg/day)	Measure
Contribution of sludge from TSS removed (TSr *0.3)	108	Dry wt.
Contribution of sludge from endogenous respiration based on COD removed (CODr * 0.2)	120	Dry.wt
Contribution from colour removal agent ≈50%	25	Dry.wt
Total	253	Dry.wt

Liquid sludge : 25.3 m3/d, ≈1% solids content

Dewatered sludge: 0.63 tons per day, ≈40% solids

Actual quantity based on actual COD/TSS

Sludge generation in Bangladesh

- Sludge quantity expected 0.5 3 kg per cubic meter of effluent treated, depending on the nature of treatment
 - Minimum sludge generation in Bangladesh from 4000 MLD of textile effluent about 2000 tons per day!
- Sludge quantity reported by industry 100 tons/day only!!!!

Possible explanation:

- ETPs not taking out sludge as needed
- Underreporting of part of sludge generated only
- Clandestine sludge dumping

Wasting of biological sludge

Situation

Many ETPs i.e. biological treatment ETPs not taking out sludge

Important

- 1. Microbial population in aeration tank to be taken out to avoid
 - bio-sludge becoming more mineralised and losing activity
 - microbial population dying
 - treatment collapsing

Wasting of biological sludge

Important

- 2. Accumulation of inorganic portion of suspended solids entering aeration tank and contributing to mineral portion.
 - Avoid build-up of mineralised sludge:
 - Septic and black
 - Heavier and tending to settle more => breaking diffuser sheets
 - ETP eventually collapsing

Deciding on how to minimize sludge quantity

Cost reduction!

Ways forward

- (1) Reduce sludge volume through organic content destruction
- (2) Reduce moisture in sludge as much as possible
 - The drier the sludge the less quantity for disposal

giz

Sludge volume reduction

- Biological digestors
- Incinerators

Moisture reduction

- Natural and heat assisted drying operations possible.
 - Using steam as a drying agent
 - Solar assisted drying

To remember

Key Messages

- Sludge management important operation in ETP not be ignored
- Suppressing sludge generation resulting in treatment collapse
- Sludge thickening pre-requisite for better dewatering
- Plan sludge dewatering method to optimize dryness also considering costs (e.g. chemical, energy, personnel)
- Minimize sludge management costs by further reducing sludge volume and moisture
- Proper sludge disposal responsibility of ETP manager and operator

Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH

Registered offices Bonnand Eschborn

GIZ Bangladesh PO Box 6091, Gulshan 1 Dhaka 1212, Bangladesh T +880 2 5506 8744-52, +880 9666 701 000 F +880 2 5506 8753 E giz-Bangladesh@giz.de I www.giz.de/bangladesh

