

Aeration systems for biological treatment

GIZ FABRIC – ETP Operator Course

Types of aerators

Selecting adequate aeration system

Contents

Purpose

Aerobic biological treatment systems **need continuous oxygen** supply

Approach

Artificial aeration

- Aeration provided by set of mechanical units ('aerators').
- Consumption of electric power and provision of mechanical action resulting in aeration of water
- Different designs depending on process

Options

- Different types of diffusers based on bubble size (e.g. coarse, medium and fine)
- Also natural aeration systems (e.g. reed beds) and cascade aerators

Typical aeration types:

- **Surface** aerators
- **Submerged** aerators
- Differences in oxygen transfer rates:
 - fluctuation between 0.7 and 1.4 kg of oxygen per Kilowatt-Hour.

Purpose:

- Increasing dissolved oxygen in treatment unit:
 - by dispersing air in water
 - splashing water in air to enable entrapment of air in water
 - bubbling air through water
- 2. Provide sufficient mixing in tank to
 - ensure contact of organic particles with bacteria;
 - prevent settling

Types of aerators

Types of aerators

Two basic ways to reach dispersion of air in water:

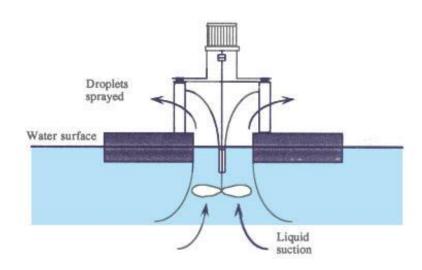
1. Surface aerators:

Installed and operated at surface

2. Submerged aerators:

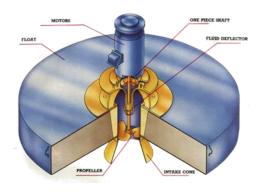
- Bubbling air from bottom of tank through orifices/diffusers
- Ejecting water with force through channel through which air sucked into wastewater

Types of aerators


Common aeration units:

SURFACE AERATORS RADIAL FLOW (SLOW SPEED, FIXED) **AXIAL FLOW** (HIGH SPEED, FLOATING) **BRUSH ROTOR** (OXIDATION DITCH)

DIFFUSED AIR AERATORS BUBBLERS (FINE, MEDIUM & COARSE) **FORCED VENTURY** (OHR) **JETS** (ASPIRATORS, EJECTROS)


Floating aerators - Design

- Popular surface aeration unit
- Mounted on a float
- Consisting of propeller installed inside rising tube and driven by non-immersed motor

Floating aerators – Concept

- Propeller drawing liquid from beneath unit and spraying above surface of tank
- Oxygen transferred through air on sprayed droplets and turbulent surface of the liquid
- Mixing in tank by creation of convectional water currents

Floating aerators

Fixed aerators – Design

- Similar to agitator, except blades designed to splash water around.
- Blades installed at surface
 - Maximum amount of water thrown around.
- Immersion of blades important factor

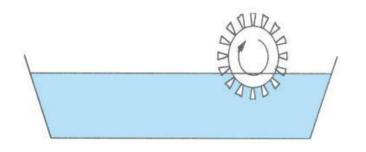
Fixed aerators - Concept

- Splashing of water into air
- Creation of powerful waves through out tank
- Entrainment of air into water through splashed water drops

Fixed aerators – Challenges

Too low immersion:

- Less water being sprayed
- Reduction of aeration effect


Too deep immersion

- No throw of water
- Effect more similar to agitator
- Increase of load

Cage rotors/ brush aerators

- Used in oxidation ditches
 - blades mounted on cylinder rotating through liquid
 - baffles to direct flow and ensure turbulent velocity

Cage rotors/ brush aerators

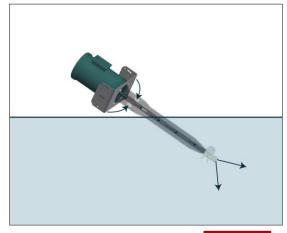
- Some oxidation ditches employing other aeration systems like:
 - Surface aerator
 - Set aerator
 - Diffused aeration
 - → often provided with flow boosters
- Apart from water spray, turbulent flow through ditches encouraging better aeration

Cage rotors

- Aeration by creating turbulence
- promoting flow through ditches

Special case

- Bottom diffusers in addition to rotating brushes on surface
 - improve aeration and oxygen transfer.



Bottom diffusers in the oxidation ditch and ABS flow boosters.

Jet aerator mounted on floats

- Generally used for low aeration requirements (e.g. aqua culture)
- Used in oxidation ditch because of unidirectional flow
- Multiple units sometimes used for rectangular tanks.
- Used for shallow aeration tanks
- Common in small ETPs

Jet aerator mounted on floats – Concept

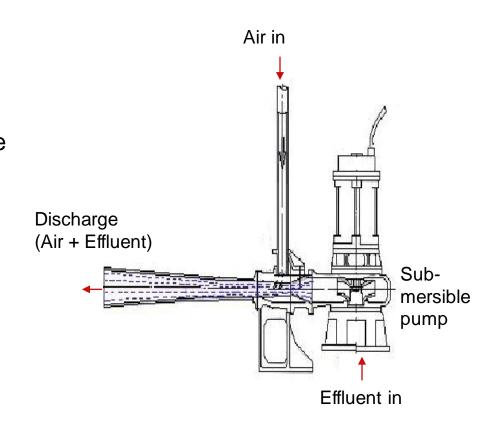
- Mounted on floats on both sides with hollow shaft extended into water
- Rotating impellers at end of shaft
 - Water jet sucking in air and discharging airwater mixture.

Jet aerator mounted on floats (Blowtac)

Concept

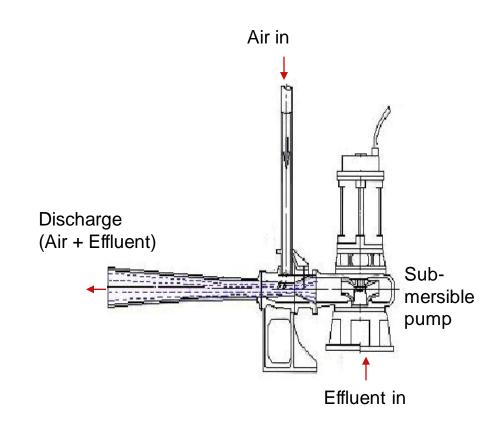
- Bubbling of from bottom
 - Air bubbles rising to top, passing through water column and getting dissolved in water
- Efficiency of air dissolution depending on contact time between air and water
 - Longer contact time with water => more air dissolved

Improving contact time of air and water

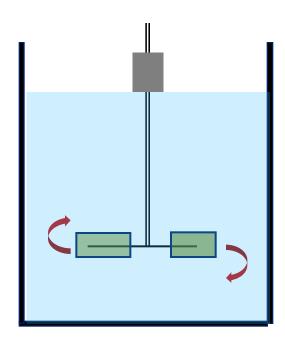

- (1) Increasing depth of the tank
- (2) Reducing size of air bubbles
- (3) Deflecting horizontal movement of air

Remember

Fine bubble diffusers more efficient than coarse bubble aeration!


Ejectors

- Submersible pumps with air inlet line attached to outlet
 - Water suction from bottom and discharge towards side
 - Vent pipe attached to discharge line
 - Air being sucked into system and mixed with effluent due to force of water pumped


Ejectors

- Venturi arrangement after point of air joining water leads to sufficient air diffusion
- Mixing power of system relatively high
- Aeration power relatively low

Turbine aerators

- Simple aeration devices used in ponds, aqua culture, etc.
- Increasing acceptability in wastewater treatment
 - relatively high oxygenation capacity

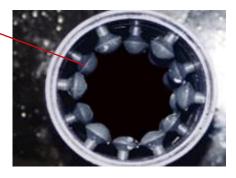
Turbine aerators – Design

- Electric motor-driven turbine impeller rotating at high speed
- Impeller either integrated
 - with air line, or
 - installed above pipe or sparging ring discharging compressed air
- Use of more than one impeller in same axis depending on depth of aeration basin

Turbine aerators – Concept

- Air bubbles discharged from pipes and dispersed by rotation of turbine.
- Power drawn by turbine systems used for
 - Maintaining mixing and
 - Breaking down and dispersing air bubbles (the latter demanding most of power).

Deflected air bubblers


- Air introduced into tube
 - No direct release into wastewater.
 - Collision with multiple deflectors, creating finer bubbles and reducing speed of upward rise
- Common deflected air bubbler:
 - OHR aerator

Mushroom like projections within the tube

Deflected air bubblers – OHR aerator

- Air introduced to polypropylene or steel tube with mushroom-shaped projections inside
- Air introduced together with water hits projections and creating smaller bubbles
 - Zig-Zag movement

Deflected air bubblers

Advantages:

- Long lifespan
- Absence of clogging
- Easiness of maintenance

Disadvantages:

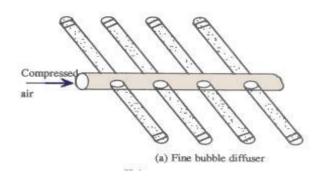
 Low efficiency due to higher amount of diffused air and hence power consumption

Deflected air bubblers – OHR in operation

Special design of OHR system

- air bubbles breaking into finer bubbles
- creating fine-medium bubbles

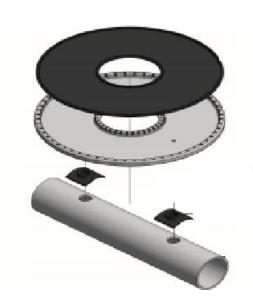
Diffused aeration systems


- Diffusers divided into:
 - Fine bubble
 - Medium bubble
 - Coarse bubble
 - Large bubble diffusers
- Placed along air manifolds, close to bottom of aeration tanks

Diffused aeration systems - Examples

Fine bubbles

- Different materials (EPDM rubber, ceramic or steel) with fine pores
- Mostly EPDM rubber, covering either pipe or disc made of plastic
- Installed in grid of pipes (fixed or flexible)
 located at bottom
- Very small bubbles with high surface for good oxygen transfer from air to wastewater


Diffused aeration systems - Examples

Medium bubbles

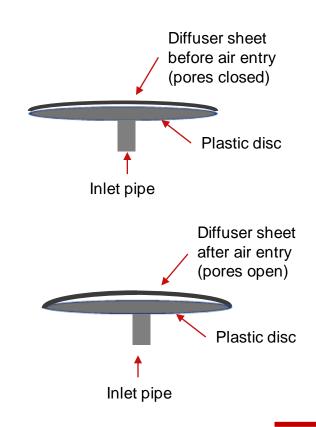
 Mostly perforated pipes or tubes wrapped with plastic or woven fabric

Large bubbles

- Orifice devices of various types,
- Some designed to be non-clogging.

Diffused aeration systems - Examples

Coarse bubbles


- Mostly porous pipes with nozzles
- Orifice devices of various types
 - some designed to be non-clogging.
- Less efficient for oxygen transfer
- Presence of particles in air no problem
- Lower cost and maintenance requirements

Diffused aeration systems

Non-clogging effect

- Fine pores in rubber diffusers open only when inflated.
- When air withdrawn, contracting and closing pores.
 - Closed pores preventing sludge getting into diffuser tubes and air lines.

Bottom bottle diffusers

To remember

"Bubblers" working by

- Letting in air at bottom of tank
- Allowing bubbles to pass through the water
- Allowing air to get mixed in water
- Preventing settling of solids in tank through release of air at bottom

To remember

Fine bubble diffused aeration

- only showing very gentle agitation at top
- high turbulence (like coarse bubble) indicator for broken diffuser sheet
- EPDM diffuser sheets becoming brittle after some time
 - need of replacement after 2-4 years
 - consider lifting systems

Selecting adequate aeration system

Selecting adequate aeration system

Main factors for selection

- Capital and operating cost
- Efficiency of aeration
- Maintenance requirement
- Lifespan of system

Choice of adeaquate aeration system

Additional factors for selection:

- type of ETP and its capacity
- application area (e.g. aeration tank or equalization tank)
- Diffused aeration systems most common in medium and large ETPs

