

FABRIC Asia

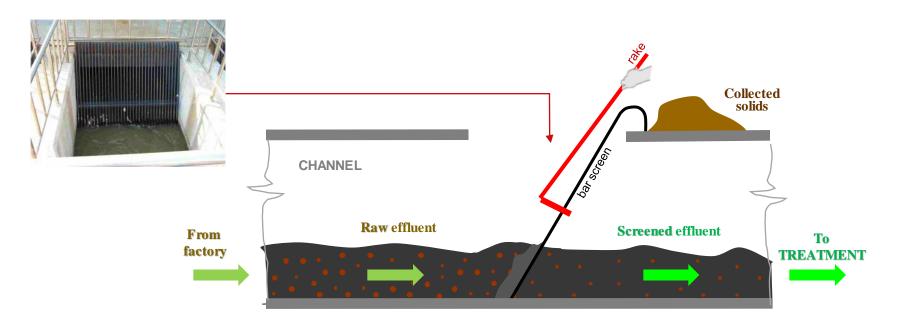
Primary treatment – Objective, function and operations

GIZ FABRIC IS – ETP Operator Course

How to manage screening and grit removal

How to ensure proper equalization

How to adjust pH level

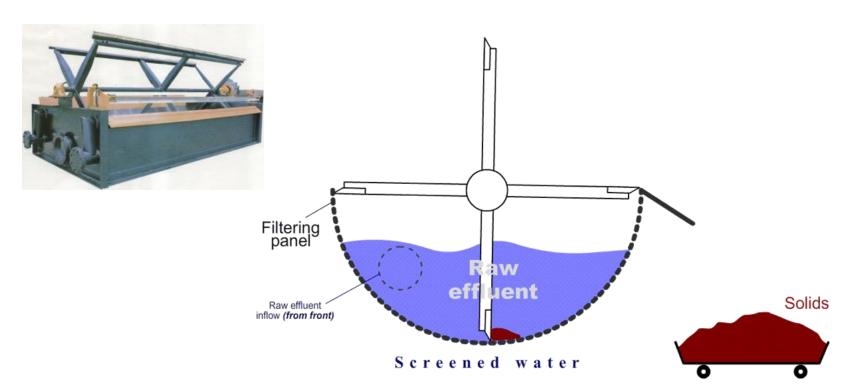

Contents

3

Key aspects of primary treatment

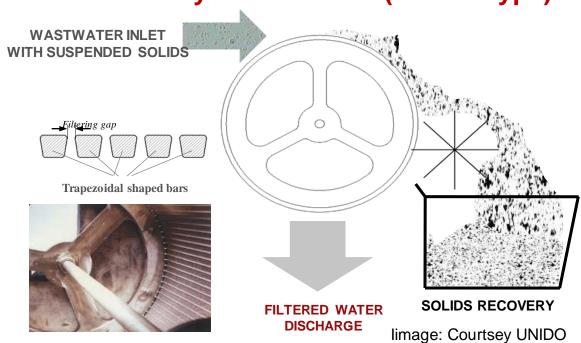
- To make effluent fit for treatment ETP operations and machinery
- Physical treatment first part of primary treatment
- Specific units
 - Screening
 - Grit removal
 - Equalisation (including natural neutralization)
 - Cooling

Mechanical bar screens (Example)



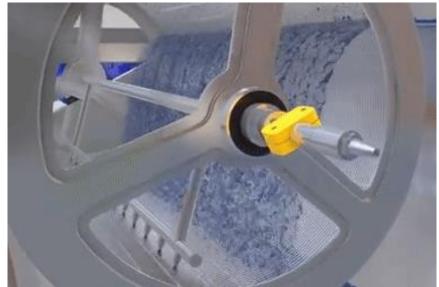
Mechanical bar screens (Example)

Self-cleaning screen (Parkwood type)



Rotary brush screens

Rotary drum screen (Konica type)



Mechanical screen (Example)

Mechanical screen (Example)

Grit removal system

To **remove sand-like minerals** for avoiding tear and wear in subsequent treatment units

- Flow velocity control with proportional flow weirs or Parshall flumes
- Aerated grit chamber:
 - Spiral flow aeration tank with air diffusion tubes on one side
 - Controlled separation of inorganic and organic particles
 - Settling section for heavier particles

Grit removal system

To homogenise incoming effluent from different production areas with different pollutants and pH levels

- Equalisation tank
 - Collecting and storing incoming streams (also equalizing peak and low inflows)
 - Mixing different streams
 - Cooling of effluent
 - Naturally neutralizing pH-levels

Equalisation tank - set up

- Usually concrete (RCC) tank circular or rectangular
- Usual below ground level
- Adequate capacity for normal retention time of 16 - 24 hours
- Aeration system

Equalisation tank - set up

For consideration:

- Poor equalization in case of low retention time
- Loss of volume (free board) in case of gravity inflow
- Pumping required in case of too low inflow levels after screens and grit chamber

Equalisation tank - aeration systems

- To facilitate complete mixing
- Type of aeration systems
 - diffused aeration
 - jet aeration
 - turbine aerators and
 - floating aeration.

Remember:

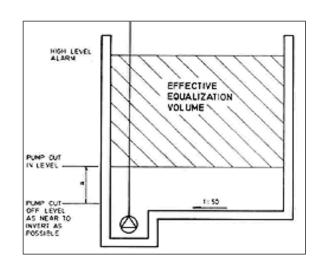
Fixed surface aeration not suitable!

Equalization tank with jet aeration

Equalisation tank - aeration systems

Diffused aeration elements

- Main air pipes from blower house along/under walls and walkways to equalisation tank
- Lateral header pipes to diffuser
- Arrangement for lifting air headers and diffusers to avoid emptying tank for cleaning or repair.

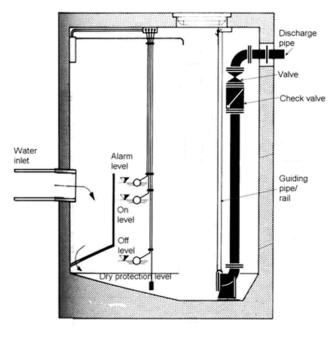


Diffusers in equalization tank

Equalisation tank - pumping

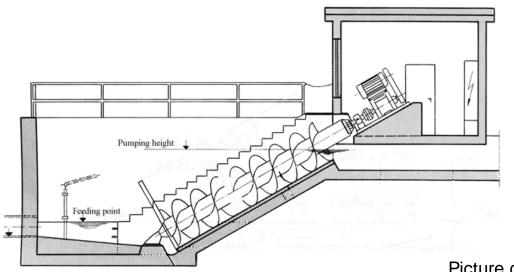
Pumping to primary (chemical) treatment or biological treatment required.

- Pumping rate to allow flow distribution throughout day.
 - Effluent inflow of full day in 8 10 hrs. into equalisation tank
 - Equalisation pumping continuous for 16 24 hours/day
- Directly from equalisation tank or via separate pump well.



Equalisation tank – pumping

- Pumping pit for complete emptying of tank
- Set of pumps for rotating operation based on specified timings
- Automatic level sensors for pumping in equalization tank
 - Alternative manual switching on/off by ETP operator before full level and minimum levels


Equalisation tank – submersible pumping arrangement

Picture courtesy: UNIDO

Equalisation tank - Screw (Archimedes) type pump for effluent lifting

Picture courtesy: UNIDO

pH control of equalised effluent

pH control of equalised effluent

Effluent to be in neutral to avoid interference with biological treatment

- Usually, pH adjustment needed after equalisation.
- pH adjustment part primary treatment.
- Additional final pH adjustment before biological treatment

Controlled pH adjustment options:

- in equalization tank (occasional)
- aeration tank inlet (more common) e.g. by acid dosing

pH control of equalised effluent

pH adjustment

- Alkali (e.g. caustic soda, soda ash, if effluent acidic.
- Hydrochloric acid or sulphuric acid, if effluent alkaline (more common)

Dosing and control methods

- Pumps with variable controls
- Direct dosing from chemical barrel (small ETPs)
- Automatic pH control with online pH meter coupled with PID control of dosing valves
 - Alternatively dosing based on laboratory studies

Effluent cooling

Effluent cooling

- Hot effluents from production to be cooled, particularly before biological treatment
 - Incoming dyeing waste streams < 50°C
 - Bacteria in biological treatment dying if temperature < 40-42°C resulting in aeration efficiency
- Cooling system at aeration tank inlet for full biological ETPs required

Effluent cooling

Cooling tower at aeration tank inlet

Cooling system at aeration tank inlet

To remember

- Good physical treatment perquisite for efficient ETP operation
- Screening to prevent clogging pumps and piping, best by combination of one manually cleaned and one mechanical screen
- Grit remover system to extend life of mechanical equipment and reduce built-up of sedimentations in tanks
- Good equalization or homogenisation with aeration for achieving good mixing, natural neutralisation and cooling
- Size of equalization to be based on expected peak volumes and required retention time
- Effective pH neutralization required for biological treatment systems

