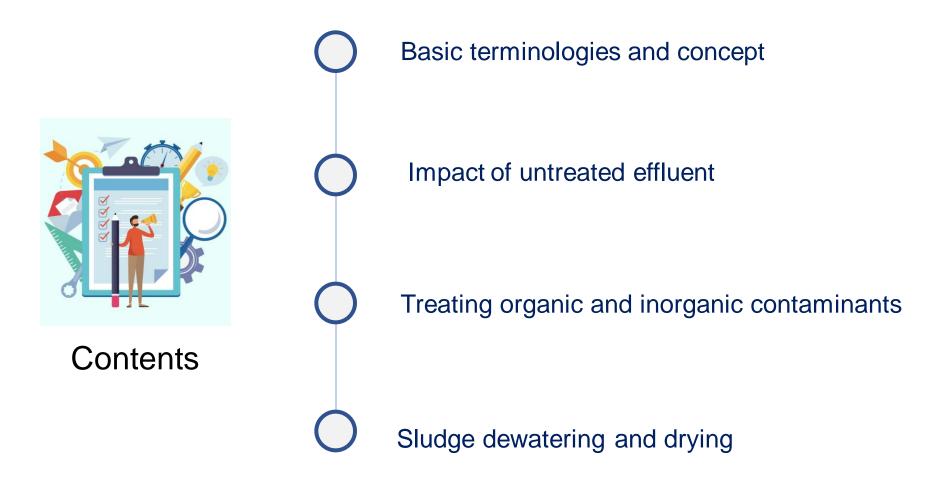
TRAINING PROGRAMME FOR ETP OPERATORS IN TEXTILE INDUSTRY


Promotion of Sustainability in the Textile and Garment Industry in Asia - FABRIC

Introduction to effluent treatment

GIZ FABRIC – ETP Operator Course

Basic terminologies and concept

Wastewater and effluent treatment – Basic terms

- Wastewater treatment = removal/reduction of contaminants/ undesired components in spent water from an operation to ensure its safe release to environment or reuse.
- Domestic wastewater (also called municipal wastewater or sewage) treated in sewage treatment plant (STP)
- Wastewater (effluent) from industrial operations treated industrial wastewater treatment plant or effluent treatment plant (ETP)
- Effluent treated in
 - individual ETPs or
 - common ETPs (CETP), often for a cluster of industries.

Some of the largest municipal wastewater treatment plants in the world

Effluent treatment – Concepts

Other types of ETP:

- Grey water treatment plants
- Agricultural runoff treatment plants,
- Landfill leachate plants, etc.

Effluent Treatment – Concepts

- In most part of world, pre-treated effluent discharged into municipal sewer for combined treatment in sewage treatment plants (STP)
- Some wastewater further treated and reclaimed as recovered water
 → ultimate of recovery = zero liquid discharge (ZLD).
- Main purpose of effluent treatment:
 - Treated wastewater to be safely disposed or reused.
 - Effluent from textile processing operations considered as highly polluting warranting high level of treatment

Impact of untreated effluent

10 Training Course for ETP Operators in Textile Industry

Possible impacts of untreated effluent

Water = Very valuable resource AND Wastewater = wasted water

- Effluent from textile processing containing various types of contaminants such as organic, inorganic and toxic.
- Discharge of untreated effluent → adverse impacts on receiving environment
- Organic matters most common pollutant
 - major contaminant in most industrial effluents such as from distilleries, paper mills, textile factories, tanneries, breweries, fertilizer plants

Possible impacts of untreated effluent

- Damage to aquatic life, threatening availability of food for people and affecting livelyhood of farmers
- Spoilt groundwater becoming unfit for domestic usage from effluent discharged to land and percolating down
- Adverse effects on fertility and yield of crops and vegetation from effluent discharged on to land for irrigation
- Contamination of fresh surface water from discharge to water bodies, making unfit for further use

Treating organic and inorganic contaminants

Organic contaminants

- Organic contaminants more predominant, except electroplating effluent with high level of inorganic contaminants
- Common treatment methods:
 - Chemical precipitation
 - Biological degradation
 - Chemical oxidation.
 - Lower concentration of organics treated by adsorption too.

Organic contaminants

- Newer treatment technologies:
 - thermal treatment
 - membrane based separation
 - plasma advanced oxidation
- Very high organic effluents (e.g. spent wash from distilleries) treated for
 - energy generation (e.g. bio-methanation)
 - co-composting.

Inorganic contaminants – Heavy metals

- Vast variety of inorganic pollutants e.g. salts and heavy metals. most relevant in textile production
- Common treatment of metals through precipitation
 - Possible for most heavy metals as their insoluble salts (such as hydroxides)
 - Precipitated by addition of lime and alum/ ferrous salts aided by polyelectrolytes.
 - Disadvantage: Metals transferred from liquid effluent to sludge and posing sludge disposal problem

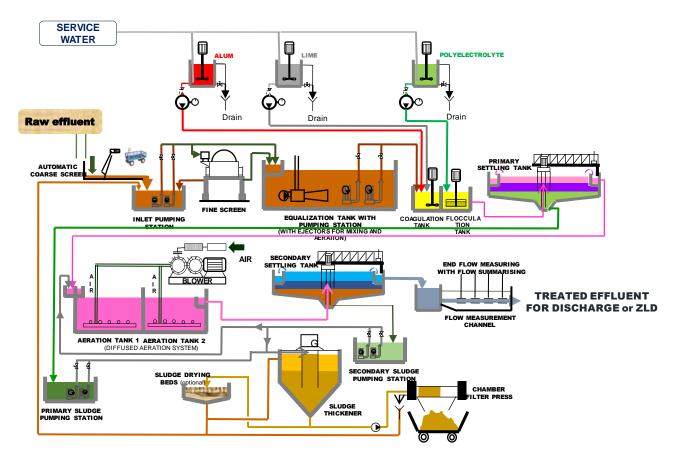
15 Training Course for ETP Operators in Textile Industry

Inorganic contaminants – Salts

- Not possible to precipitate and remove salts, particularly that of sodium.
- Removal of salts by membrane technologies such as using Reverse Osmosis (RO).
 - Membrane technologies leaving concentrated saline stream to be handled separately.
 - Saline reject further concentrated by evaporation/ distillation to separate it out in solid form.

Inorganic contaminants – Salts

- Concentration salt solutions (especially single salt solutions) to required levels for re-use
- Less common technologies
 - Ion-exchange
 - Electrolysis
 - Membrane distillation
 - Forward osmosis
 - Electrodialysis reversal EDR
 - Vapor compression


Common unit operations in effluent treatment

Unit operation	Functions	Common unit
Screening	 Removal of large particles (suspended or floating) 	Manual/mechanical screens
Grit Removal	 Removal of sand like materials from the effluent. 	Grit chamber
Equalization	 Homogenizing the characteristics of the effluent Flow balancing. 	Equalization tank Aerators, mixers
Coagulation/ flocculation	 Facilitating settling of colloidal solids & allowing the small solids to join together to form sludge. 	Flash mixer & flocculator
Primary settling	 Removal of part organic/inorganic settleable solids 	Primary clarifier/tube settler

Common unit operations in effluent treatment

Unit operation	Functions	Common unit
Biological treatment	 Removal of organics using microbial action 	Aeration tank
Secondary settling	 Settling of bio-sludge, enabling biomass inventory 	clarifier
Tertiary treatment	 Removes suspended solids/increase dissolved oxygen 	Multigrade filter & aeration
Sludge dewatering	 Reducing moisture of liquid sludge to dried sludge 	Sludge filter press/centrifuge
Sludge maturation	 Reducing moisture of dewatered sludge further 	Sludge storage.

Flow chart of composite textile CETP

Source UNIDO

Chemical precipitation

- Targeting suspended and colloidal organics
- Involving coagulation, flocculation and solids separation for removal but not destruction of organics.
 - Commonly used coagulating agents: Metallic salts
 - Newer coagulation methods include electro coagulation.

Chemical precipitation

Basic concept

- Coagulated colloidal particles very small.
- Combination of particles through flocculation to bigger flocs amenable to settling/flotation.
- Solids separation through sedimentation as well as dissolved air flotation & filtrations

Biological treatment

- Most common method for organics
- Basic concept:
 - Micro-organisms used for 'eating' away pollutants, though actual metabolism complex.
 - Unlike in chemical treatment or filtration, organic compounds being destroyed

Biological treatment

Treatment categories:

Aerobic treatment	Anaerobic treatment
Surplus oxygen in tank needed	Working in absence of oxygen
Conversion of organic material into carbon dioxide and water	Conversion of organic material into carbon dioxide and methane

Anaerobic biological treatment

Key features

- Anaerobic micro-organisms, mostly bacteria, naturally degrading (putrefying) organic matter
- Reactions mainly involving fermentation and bio-methanation
- No need of air or oxygen in wastewater; anaerobic treatment

less effective with dissolved air..

Anaerobic biological treatment

Key features (contd.)

- End product = mixture of gases (carbon dioxide and methane, other gases like hydrogen sulphide, if Sulphur containing compound in form of sulphide or sulphate).
- Mixture of gas used as fuel for burning in boilers and for electricity production.
- Anaerobic treatment more suitable for readily degradable high organic effluents

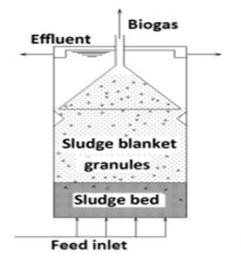
Anaerobic biological treatment

Overview of systems

- Earlier anaerobic treatment units in form of anaerobic lagoons (ponds) storing effluent for long time (e.g. 30 - 40 days)
- Disadvantages: Large areas needed and odour issues; nowadays less common.

Anaerobic biological treatment

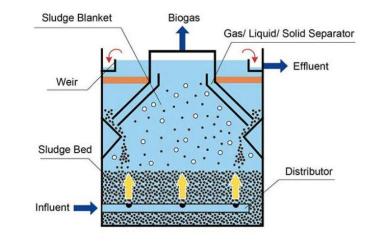
Overview of systems


- Anaerobic filters with media (synthetic media or even broken rubble chips)
- High rate digestors with high organic reduction and maximum biogas production.
- Sludge digestors with in built heating systems to make use of higher efficiency bacteria operating at higher temperature.

Anaerobic biological treatment

Emerging systems

- Upflow anaerobic sludge blanket (UASB) reactors working on suspended bio-sludge containing microorganisms.
 - Bio-sludge generated forming into granular shape after some time creating sludge blanket.
 - Kept in suspension due to upward flow of effluent in reactor.
 - Installed gas liquid solids separator at upper side of reactor to separate the bio-gas and to retain bio-sludge within reactor.



Anaerobic biological treatment

Emerging systems

Fluidized media bed reactors and hybrid reactors

(with fixed filter and moving bio-sludge).

Modified UASB process (Source: ITRI, Taiwan)

Anaerobic biological treatment

Applicability of anaerobic treatment in textile production:

- For textile effluent treatment limited
- Very few anaerobic systems operating

Aerobic biological treatment

Key features

- Aerobic micro-organisms, mostly bacteria, degrading organic matter into basic compounds.
- End product: Carbon dioxide and water.
- Once reaction completed organic matters completely destroyed.
- Dissolved oxygen (DO) in water needed.

Aerobic biological treatment

Key features (contd.)

- Aeration concept and requirement:
 - Organisms using up the oxygen; loss of oxygen to be compensated by external aeration
 - Aeration systems increasing oxygen in water through mixing water with air
 - Commonly done by either bubbling air into water or splashing water facilitating mixing of liquid and air at surface

Aerobic treatment

Common systems

- Activated sludge process with bio-mass maintained in aeration tank.
 - Sufficient quantity (inventory) of micro-organisms, mainly bacteria to be kept in system.
 - Depending on quality of inlet water, small quantity of excess sludge generated and to be disposed off.
 - Effluent with bio-sludge settled in clarifier
 - Settled bio-sludge returned back to aeration tank.

Aerobic treatment

Common systems

- Depending on treatment duration activated sludge process:
 - Conventional aeration
 - extended aeration, where extra aeration time provided for digestion of excess sludge

Example of common aerobic biological systems

Oxidation ditch

Conventional aeration tank

Aerobic treatment

Older systems

- Being increasingly replaced
- Examples

- Aerated lagoons, aerobic stabilization ponds due to high land area requirement and low efficiency.
- Trickling filters with effluent being sprayed on media with
 wastewater trickling down sucking in atmospheric air for acre

wastewater trickling down sucking in atmospheric air for aeration.

Aerobic treatment

Emerging systems

- Upgraded trickling filters with improved media
 - Earlier media replaced with lighter synthetic media and with high level of media uniformity coefficient.
- Fluidized aerobic reactors common for smaller ETPs;
- New ETPs using variant called as moving bed

biological reactors (MBBR)

Aerobic treatment

Emerging systems

Moving Bed Biological Reactors (MBBR):

- Aeration tank with special plastic media used for housing bacteria treating wastewater; sieves preventing escape of media.
- Main advantages: Less land required, lower operating cost.
- Hybrid MBBR with suspended and attached growth systems.

MBBR

Aerobic treatment

Emerging systems

- Sequential batch reactor (SBR):
 - Same tank used for both aeration and settling operations.
 - Automatic controls used for precise switching over between two tanks.
 - Used as batch process, usually with multiple units to continue operations.

SBR

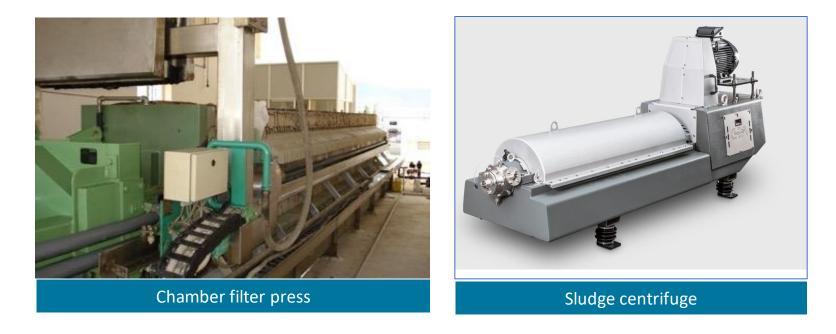
Sludge characteristics

- Liquid sludge generally of 3 4% solids;
- Wasted liquid sludge from aeration tank usually about 1% solids and 2 - 3% after thickening;
- Dewatered sludge usually 25 35% dry solids content

Dewatering methods

Dewatering in sludge drying beds:

- In small ETPs
- Mainly by water percolation and some solar drying;
- minimum of 7 days retention cycle needed.


Dewatering methods Mechanical dewatering:

- Sludge centrifuge most popular in medium to large ETPs.
- Chamber filter press popular since no requirement of sludge conditioning.
- Belt filter presses

Dewatering methods

Mechanical dewatering:

For consideration

Disposal logistics and costs

- Often dewatered sludge hazardous and requiring disposal in secured landfill sites
- Not many plants adopting cost-effective sludge digestion to reduce sludge bolume
- 40 70% less disposal cost with reduced volume for disposal

Dewatered sludge

For consideration

Disposal logistics and costs

- In Bangladesh, maturation of sludge common, keeping over 6 months period.
- Alternative maturation by using thermal dryer fueled by either steam from boiler or hot oil from a thermic-fluid system.
- Ideally, aim for disposal of sludge with moisture content less than 30%

Matured sludge

Sludge disposal requirements in Bangladesh

- Sludge from textile ETP considered hazardous requiring special disposal.
- Sludge guidelines adopted by DoE of Bangladesh:
 - Three groups of sludge categories (A, B, C)
 - Category A only for municipal sludge; remaining sludge either B or C based on concentration of heavy metals.
 - Sludge from textile ETPs mostly category
 B but also some in category C.

Department of Environment Dhaka, Bangladesh February 2015

Sludge disposal requirements in Bangladesh

Disposal requirements for category C sludge

- Secured landfill with multiple layers of liners, leachate collection & treatment, capping on filling; costly, land requirement, non renewable.
- Incineration feasible, but costly, need for disposal of ash, logistics arrangements.
- Co-processing of category B & C for making construction materials,
 - in Bangladesh only one co-processing company (Geocycle).

Sludge incinerator

Sludge disposal requirements in Bangladesh

- To simplify classification approach, acceptable limits for major sludge quality parameters defined in the Guideline for Sludge Management in Bangladesh Textile Sector
- Threshold differentiates by categories A, B and C

Parameter	Unit	Category A	Category B	Category C
Cadmium, Cd	mg/kg	10 or less	11 – 85	> 85
Chromium, Cr	mg/kg	< 600***	< 600	> 600
Copper, Cu	mg/kg	800 or less	801 – 4300	> 4300
Lead, Pb	mg/kg	< 840**	< 840	> 840
Nickel, Ni	mg/kg	200 or less	201 - 420	> 420
Zinc, Zn	mg/kg	2500 or less	2501 – 7500	> 7500
Mercury, Hg	mg/kg	8 or less	9 - 57	> 57

Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH

Registered offices Bonn and Eschborn

Friedrich-Ebert-Allee 32 + 36 53113 Bonn, Germany T +49 228 44 60 - 0 F +49 228 44 60 - 17 66

E info@giz.de I www.giz.de Dag-Hammarskjöld-Weg 1 - 5 65760 Eschborn, Germany T +49 61 96 79 - 0 F +49 61 96 79 - 11 15

