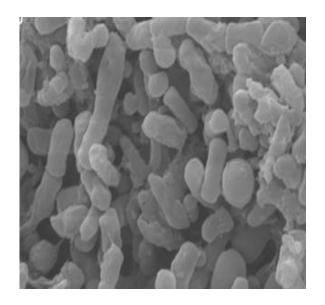
Training of Trainers Programme on Capacity Development of ETP Operators

Promotion of Sustainability in the Textile and Garment Industry in Asia - FABRIC

Day 2: Presentation 3

Biological Treatment for Textile Wastewater

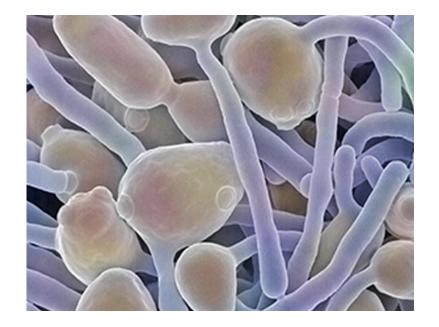

Contents

Basic concept of biological treatment

Principle of aerobic & anaerobic processes

Overview of biological treatment systems

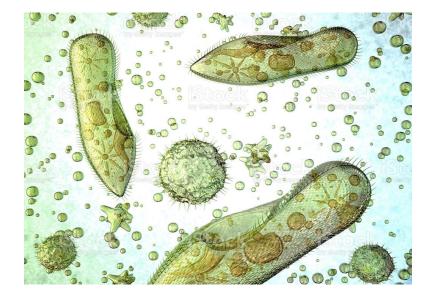
Activated sludge processes



Destruction of organics using micro-organisms, such as

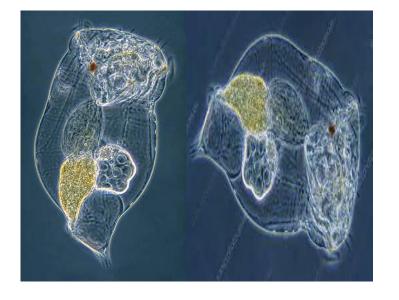
- **Bacteria** (primarily)
- Protozoa
- Fungus

Use of aerobic and anaerobic bacteria


- Aerobic bacteria consuming oxygen dissolved in wastewater
- Anaerobic bacteria not needing/tolerating oxygen in wastewater, instead using oxygen organic material itself

Micro-organisms in wastewater

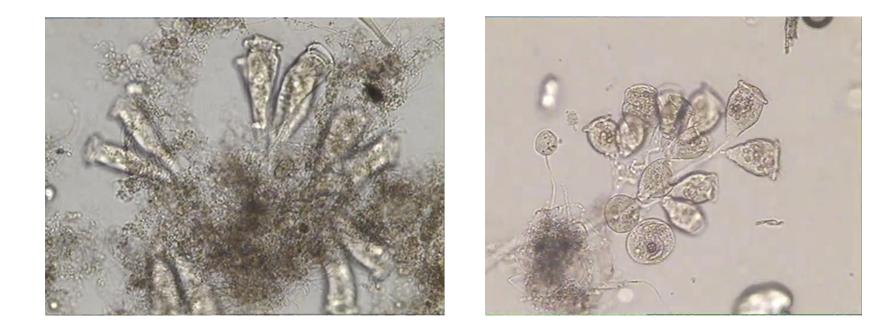
Fungus


- Algae and fungi
- indicating problems of pH and older sludge

Micro-organisms in wastewater

Protozoa

- Amoebae, flagellates and ciliates
- Removing and digesting
 - ✓ dispersed bacteria
 - ✓ suspended particles



Micro-organisms in wastewater

Metozoa

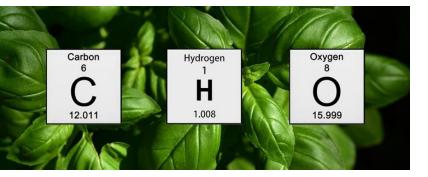
- Rotifers, nematodes and tardigrades
- Eating
 - ✓ excess bacteria
 - ✓ fungus
 - ✓ algae
 - \checkmark other protozoa

Micro-organisms in ETP bio-sludge

What are the type Biological treatment systems in ETPs?

Treatment process

Micro-organisms


- commonly using organic content as energy source
- disintegrating organic material present wastewater in similar fashion.

Processes classified as

- Aerobic (requiring oxygen for their metabolism),
- Anaerobic (growing in absence of oxygen
- Facultative (operating with or without oxygen using different metabolic processes)

Principle of aerobic and anaerobic processes

Aerobic and anaerobic processes

Organic materials containing carbon, hydrogen and oxygen, nitrogen, sulphur and other

Examples

- Sugar with chemical formula $C_{12}H_{22}O_{11}$.
 - ✓ 12 carbon atoms
 - ✓ 22 hydrogen atoms
 - ✓ 11 oxygen atoms.
- Common alcohol with chemical formula C₂ H₅ OH, which means
 - \checkmark two carbon atoms
 - ✓ six hydrogen atoms
 - \checkmark one oxygen atom

Aerobic and anaerobic processes

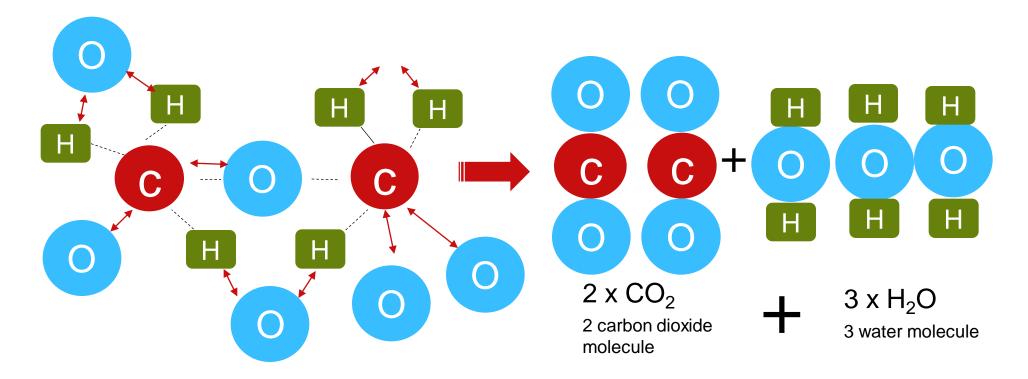


Biological treatment

- In aerobic treatment, degrading organics to
 - ✓ water (H2O, two atoms of hydrogen and one atom of oxygen)
 - carbon dioxide (CO2, two atoms of oxygen and one atom of carbon)
- In anaerobic treatment,
 - methane gas (CH4, one atom of carbon and four atoms of hydrogen)
 - ✓ carbon dioxide
 - ✓ Methane gas is a fuel

Aerobic processes

Degradation C₂H₅OH (common alcohol) using **excess hydrogen**



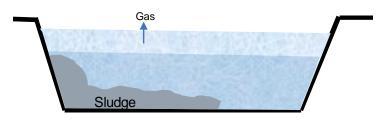
Alcohol (consisting of 2 carbon atoms, 6 hydrogen atoms, 1 oxygen atom)

6 more oxygen atoms

Aerobic processes

Degradation C₂H₅OH (common alcohol) using **excess hydrogen**

What are some anaerobic biological treatment systems?



Anaerobic treatment systems

- Working without external oxygen supply
- Suitable for high organic content readily biodegradable.
- Not preferred option for textile effluent
- Popular systems include Anaerobic lagoon, Anaerobic digestors, Anaerobic filter with natural media or synthetic media.
- Newer versions include Upflow anaerobic sludge blanket reactor (UASB) reactor.

Anaerobic lagoon

- Wastewater kept in large pond for long time
- Naturally present bacteria naturally treating organic matter
- Gentle mixing by gases produced
- Lagoon set-up
 - Depth of 3-5 meters in center and shallow sides
 - Retention time 20 40 days depending on organics content and temperature
- moderate efficiency of 40 -70% organics reduction.

Image: Lakeside equipment

Anaerobic lagoon

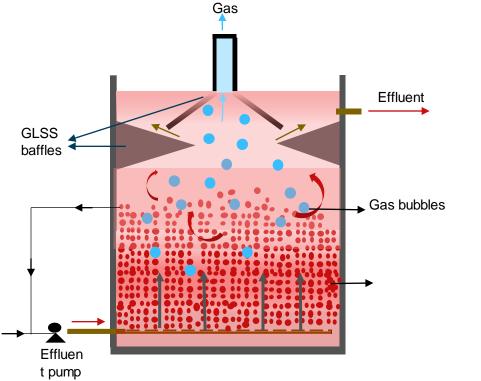

- 3 -15 days retention time high bacteria population
- Set-up
 - Deep tank with mixing system (about 5 8 m)
 - Provisions for collecting bio-gas and further use as fuel.
 - Not suitable suited for combined textile wastewater because of
 - ✓ large volume
 - \checkmark low degradable organics
- Maybe used for high organic desizing effluent

Image: Lakeside equipment

Anaerobic lagoon

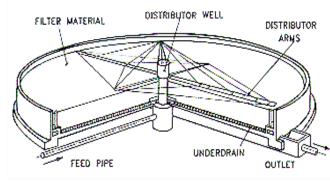
- Bacteria growing on reactor media
- Bacteria 'eat' & destroying organic when it pass through
- Suitable for small ETPs with lower suspended solids
- Natural or synthetic filter media
 - Natural: rubble chips and
 - Synthetic: plastic balls or (New) corrugated plastic media
- Fixed (old) or (new) movable filter media
 - ✓ fluidised synthetic polymer media.

UASB concept

- Uses Sludge blanket with flocs of suspended solids, organics and micro-organisms.
- Turbulence and upflow movement also by gas produced
- Organics treated by bacteria in blanket
- Sufficient upflow velocity with inflow pump and recycle (when no flow).
- Sludge blanket with 3-6% of solids concentration of bio-sludge.
- GLSS (gas-liquid-solids separator) at top

Image: evoqua water technologies

Aerobic treatment systems


Bacteria requiring constant external oxygen supply

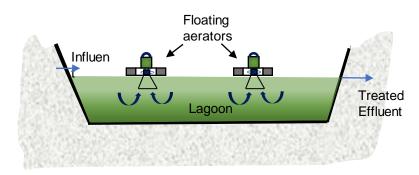
- bacteria using oxygen dissolved in water, reduces it
- aeration systems replacing oxygen

Three categories

- Attached growth systems with bacteria attached to media
- Suspended growth systems with bacteria growing on suspended mass of sludge e.g. activated sludge system
- Hybrid systems with fluidised media.

Attached growth systems: trickling filter

- Oldest established system
- Simple concept:
 - ✓ Effluent sprayed over bed of fixed media using rotating arm.
 - ✓ Natural media (gravel, sand) or plastic media with high surface area
 - ✓ Aeration by air being sucked in water downflow (also with fans)



Trickling filter at Brunswick Sewer District

Attached growth systems: trickling filter

- Low depth of media for aerobic condition
- Anaerobic conditions if too deep.
- Settling basins for recirculating some treated effluent to keep media wet.
- Dead bacteria forming sludge being settled & wasted.

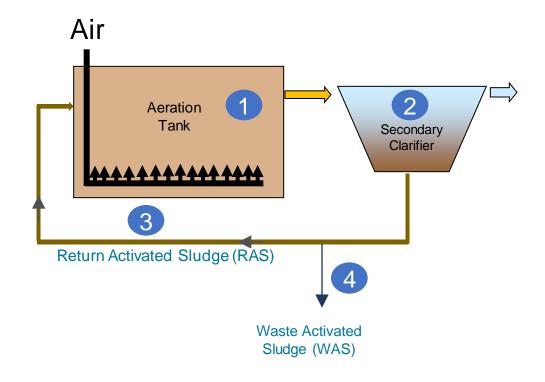
Suspended Growth Systems: Aerated lagoons

- Oldest and simplest aerobic treatment system
- Usually half of tank (top) only fully aerobic with bottom anoxic (facultative) or mildly anaerobic
- Aeration with floating type, jet aerators, aspirators or fixed aerators mounted on floats.
- Retention times 3 5 days (depending on effluent type)
- Suitable for low suspended solids' effluent only or where suspended solids organic.

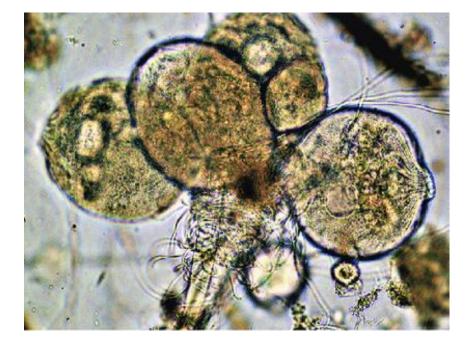
Suspended Growth Systems: Activated Sludge Process (ASP) Systems

- Most popular wastewater treatment system all over the world (also in Bangladesh)
- Involving development of 'activated sludge' as interim product of bacterial organic degradation
- Need aeration for keeping bio-sludge alive and mixing inside tank.

Activated Sludge process

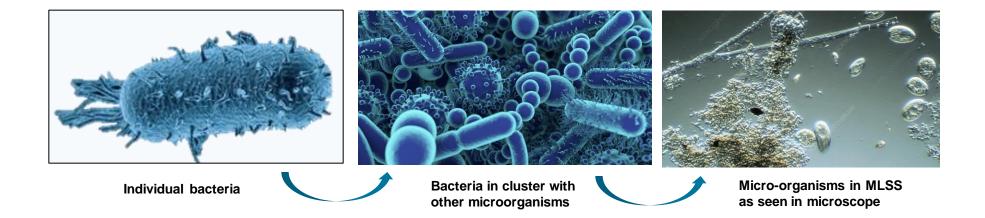


What is activated sludge? Why is called so?



- treatment of organics using micro-organisms in biologically 'activated' sludge.
- Mixed liquor = raw effluent + returned bio-sludge mixed liquor suspended solids, in short MLSS, housing bacteria
- intermittent product formed during degradation of organics in effluent.
- Usually dark brown in color, varying with microorganisms health and nature of organics
- Consisting of 95% variety of mostly aerobic bacteria species, 5% fungi, protozoa and higher forms of invertebrates

- Effluent mixed with activated sludge and aerated for treatment in aeration tank
- Bio-sludge separated from clear effluent in secondary clarifier
- Separated bio-sludge returned to aeration tank to maintain required quantity of bio-sludge.
- Some excess bio-sludge wasted to keep bio-sludge fresh and healthy



Common microorganisms in aeration basin of activated sludge

- Bacteria : organic reduction
- **Protozoa:** remove and digest dispersed bacteria and suspended particles.
- Protozoa Types: Amoebae, Flagellates, Ciliates
 & free-swimming Ciliates
- Algae and fungi: with pH changes/older sludge
- Metazoa : longer age systems including lagoons,
- Metazoa Types: Rotifers Nematodes, Tardigrades

Appearance of microorganisms in aeration basin of activated sludge

Activated sludge through microscope

Activated sludge treatment stages

Activated sludge treatment stages

Stage 1

- Making food (BOD) in wastewater available to bacteria.
- mixing wastewater thoroughly with bio-sludge, i.e., MLSS
- providing required time for reaction, i.e. retention time

Stage 2

- Converting organic material to carbon dioxide, water and cell matter
- Part of organics directly converted to end products
- some portion remain as intermediate product, i.e. cell mass, becoming MLSS

Stage 3

- Bio-flocculation, when MLSS settling as a block trapping organic materials.
- pumped back to aeration tank as return activated sludge (RAS) and further treated

Activated sludge treatment stages

Differentiation based on retention time (HRT) and/or organic loading rate, activated sludge systems

- **Conventional** activated sludge systems
 - ✓ F/M ratio of about 0.2-0.4 retention time 8-12 hours.
- Extended aeration activated sludge systems
 - ✓ F/M ratio about 0.08 -0.15 and 16-24 hours HRT.
- **High rate** activated sludge systems:
 - $\checkmark\,$ F/M ratio of about 1-2 and HRT as 3-4 hours.

Activated sludge treatment stages

Differentiation by solid separation

- Conventional aeration systems with external settling tanks
- In-situ settling systems such as sequential batch reactors
- Membrane bio-reactors using filtration for bio-solids separation instead of clarifiers.
- Hybrid reactors including MBBR, IFAS, FAB
 - \checkmark not considered as pure activated sludge systems

What you mean by the terms MLSS and F/M?

MLSS and MLVSS

- Mixed Liquor Suspended Solids (MLSS) referring to suspended solids in aeration tank.
- Mixed Liquor Volatile Suspended Solids (MLVSS)
 referring to volatile portion of activated sludge
 - ✓ loss in weight determined by heating MLSS at above 500 degree C with organic portion evaporated
 - ✓ required for calculating F/M ratio as key operational parameter
 - ✓ If MLVSS value not available, MLSS value used for calculating F/M ratio e.g. in case of steady operating plant

F/M Ratio

= amount of food given to bacteria

- 'F' (= food) referring to quantity of organics (e.g. BOD)
- 'M' (= micro-organisms) referring to quantity of bio-sludge (i.e. MLSS)
- Bacteria requiring certain food quantity to survive
 - Ratio of kilogram BOD per day to the kilogram of MLSS

F/M Ratio

depending on type of activated sludge system

Type of activated sludge	Food to microorganisms	Oxygen to food
process	F/M	kg O ₂ /kg BOD
Extended aeration ASP	0.1	2.0
Conventional ASP	0.3	1.2
High rate ASP	1.0	0.8

0.3 F/M meaning 1 kg BOD needing 3 kg MLSS

Calculating F/M Ratio for ETP

Example 1

ETP flow rate	800	m³/d.
Aeration tank size	600	m ³
MLSS concentration	3000	mg/l
MLSSV	70	%
BOD at inlet	500	mg/l

What is the F/M maintained in your ETP?

Calculating F/M Ratio for ETP

Example 1

ETP flow rate	800	m³/d.
Aeration tank size	600	m ³
MLSS concentration	3000	mg/l
MLSSV	70	%
BOD at inlet	500	mg/l

Step 1:

Calculate kg BOD load to aeration tank. BOD = 500 mg/l, flow = 800 m³/d. 500 milligrams/litre = 0.5 grams/litre = 0.5 kg/1000 litres = 0.5 kg/m³ Total BOD load for 800 m³ = 800 x 0.5 = 400 kg.

Calculating F/M Ratio for ETP

Example 1

ETP flow rate	800	m³/d.
Aeration tank size	600	m ³
MLSS concentration	3000	mg/l
MLSSV	70	%
BOD at inlet	500	mg/l

Step 2:

Calculate kg MLVSS in aeration tank. MLSS is 3000 mg/l, aeration tank volume 600 m3 and MLVSS is 70%.

MLSS quantity = 3000 milligrams/litre = 3 grams/litre = 3 kg/1000 litres = 3 kg/m3

Total MLSS for 600 m3 = 600 x 3 = 1800 kg, MLVSS = 70% of 1800 kg = 1260 kg

Calculating F/M Ratio for ETP

Example 1

ETP flow rate	800	m³/d.
Aeration tank size	600	m ³
MLSS concentration	3000	mg/l
MLSSV	70	%
BOD at inlet	500	mg/l

Step 3:

Calculating F/M F/M based on MLSS = kg BOD/kg MLSS F/M based on MLSS = 400 kg/1800 kg = 0.22 F/M based on MLVSS = kg BOD/kg MLVSS F/M based on MLVSS = 400 kg/1260 kg = 0.32

Calculating F/M Ratio for ETP

Example 2

ETP flow rate	800	m³/d.
Aeration tank size	600	m ³
MLSS concentration	3000	mg/l
MLSSV	70	%
F/M as per design	0.2	MLSS

Step 2:

Calculate the kg BOD needed @ F/M 0.2 based on MLSS, flow is 800 m3/d

F/M = 0.2, Food (F) = M x 0.2, F (kg) = 0.2 x 1800 kg = 360 kg

mg/l BOD = kg BOD/flow m3 = 360/800 = 0.45 kg/m3 = 450 g/m3 = 450 g/1000 litres = 450 mg/l

Calculating F/M Ratio for ETP

Example 2 (Calculating MLSS needed to maintain good operation.)

ETP flow rate	800	m ³ /d.
Aeration tank size	600	m ³
MLSS concentration	3000	mg/l
MLSSV	70	%
F/M as per design	0.2	MLSS

How much MLSS needed in the aeration tank?

Calculating F/M Ratio for ETP

Example 3 (Calculating MLSS needed to maintain good operation.)

ETP flow rate	800	m ³ /d.
Aeration tank size	600	m ³
F/M	0.2	MLSS
BOD at inlet	500	mg/l
ETP flow rate	800	m³/d.

Step 1:

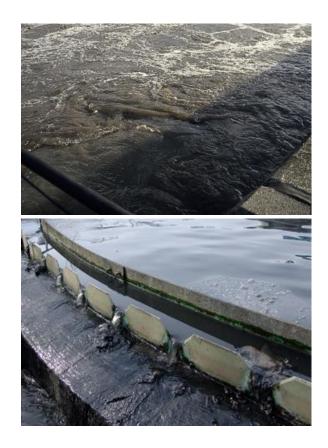
Calculate BOD load to aeration tank; flowrate 600 m3/d and BOD 500 mg/l.

BOD quantity = 500 milligrams/litre = 0.5 grams/litre = 0.5 kg/1000 litres =0.5 kg/m3

BOD quantity for 800 m3 = $0.5 \times 800 = 400 \text{ kg}$

Calculating F/M Ratio for ETP

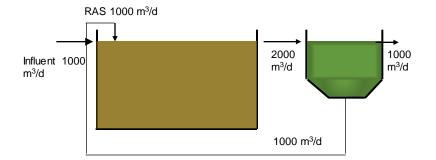
Example 3


ETP flow rate	800	m³/d.
Aeration tank size	600	m ³
F/M	0.2	MLSS
BOD at inlet	500	mg/l

Step 2:

Calculate kg MLSS needed @ F/M 0.2, tank volume 600 m3

F/M = 0.2, M = F ½ 0.2, Food (kg) = 400 kg/0.2 = 2000 kg


Total MLSS = 2000 kg, MLSS kilogram/m3 = 2000/600 = 3.3 kg/m3 = 3.3 g/l = **3300 mg/l**

Return activated sludge (RAS)

= quantity of settled bio-sludge returned to aeration tank from secondary settling tank;

- important to maintain bacterial population and health of aeration tank.
 - ✓ Generally about 85-90% of bio-solids entering settling tank returned as RAS
 - ✓ 5% overflows as suspended solids in treated effluent and 5-10% wasted as excess sludge.
- RAS quantity about 100% of inlet (range 80% -125%)

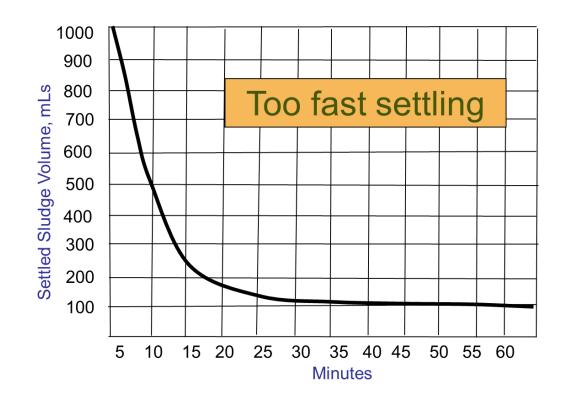
Return activated sludge (RAS)

Example:

• 1000 m3/d inflow to aeration tank = RAS 1000 m3/d.

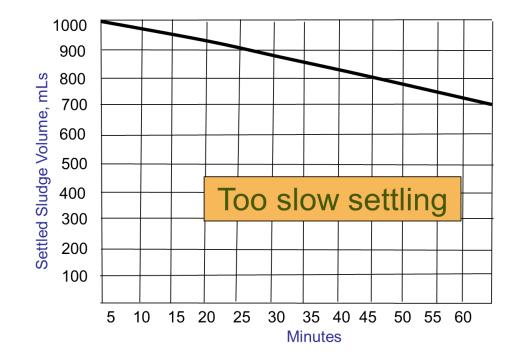
Explanation

- 1000 m3/d RAS pumped back
- Actual inflow increasing to 2000 m3/d (1000 m3 of inlet + 1000 m3/d RAS)


Return activated sludge (RAS)

- Maintain proper RAS level
 - Too much RAS thinning bio-sludge and increasing hydraulic load with effect on settling process.
 - Too low RAS leading to insufficient return of bio-solids and bio-solids overflow out of secondary clarifier, spoiling treated effluent quality and loss of bio-sludge.

Return activated sludge (RAS)


- Need to observe settleability of bio-sludge
 - ✓ Take aeration tank MLSS in 1000 ml beaker and allowed to settle for some time
 - ✓ Good MLSS settling to about 30-40% in 30 minutes
- Good settling process gradual and smooth
 - Too fast settling resulting in insufficient bioflocculation in secondary settling tank
 - ✓ Too slow settling resulting in loss of bio-solids through overflow in treated effluent.

Return activated sludge (RAS)

Example of bad settling

- Settling rate too fast.
- Within 15 mins sludge settled to about 250 ml.
- Sludge not settling as a block in settling tank.
- Results in poor BOD removal.

Return activated sludge (RAS)

Example of good settling

- Settling rate too slow.
- Even after one hour, sludge occupying 700 ml of beaker volume.
- Bio-solids overflowing in secondary clarifier and loss of MLSS.

Return activated sludge (RAS)

Example of good settling

- Settling rate even and smooth.
- Within 30 min. sludge settled to about 300 ml (i.e, about 30% of total volume).
- This shows good compaction

Sludge volume index (SVI)

= volume (in milliliters) occupied by one gram of activated sludge settled for 30 min in ml/g

To calculate SVI

- 1. keep bio-sludge inbeaker of 1 litre and settle same for 30 mins
- 2. Check MLSS (mg/l) in laboratory and calculate concentration as grams per litre
 - ✓ 3000 mg/MLSS = 3 grams per litre
- 3. Calculate SVI as ml of settled bio-sludge divided by grams per litre of MLSS
 - General SVI range 75 -150 ml/g, for textile ETP around 90
 110 ml/g.

Calculating SVI for ETP operation

Example 3

MLSS concentration	3500	mg/l
Sludge volume settling after 30 min in 1 litre beaker	325	ml

What is the SVI?

Calculating SVI for ETP operation

Example 3

MLSS concentration	3500	mg/l
Sludge volume settling after 30 min in 1 litre beaker	325	ml

Step 1

Calculate MLSS as grams per litre MLSS = 3500 milligrams/litre = 3.5 grams/litre

Calculating SVI for ETP operation

Example 3

MLSS concentration	3500	mg/l
Sludge volume settling after 30 min in 1 litre beaker	325	ml

Range of SVI needed for ETP =93 ETP appears to be in a good operational level (between 90 - 110 ml/g)

Step 2

Verify the settleability of bio-sludge in milli litres in a one litre beaker after settling for 30 minutes. Sludge settled in 30 minutes = 325 millilitre

SVI = Sludge volume settling (ml)/MLSS (gr/l)

SVI = 325/3.5 = 92.8 = say **93**

Sludge volume index (SVI)

Effects of different SVI in settling of bio-sludge

SVI ml/g	Effect on settling & quality of treated effluent
< 60	Too low, bio-sludge not settling as block since not enough filaments, possibility of fine suspended solids in treated effluent
60-120	Good settling of bio-sludge, clear treated effluent, compact sludge blanket formation.
120-180	Fair settleability, clear treated effluent
180-250	Poor settleability, reasonably clear treated effluent
>250	Very poor settleability, sludge bulking, turbid effluent with intermittent sludge overflow.

Sludge volume index (SVI)

Effects of different SVI in settling of bio-sludge

SVI ml/g	Effect on settling & quality of treated effluent
< 60	Too low, bio-sludge not settling as block since not enough filaments, possibility of fine suspended solids in treated effluent
60-120	Good settling of bio-sludge, clear treated effluent, compact sludge blanket formation.
120-180	Fair settleability, clear treated effluent
180-250	Poor settleability, reasonably clear treated effluent
>250	Very poor settleability, sludge bulking, turbid effluent with intermittent sludge overflow.

Conclusion

- Anaerobic systems for organic rich effluents (distillery, brewery, and UASBs in sewage)
- Aerobic for small medium organics, most common : Activated sludge process (ASP)
- System to be selected on consideration of cost (capital, O&M) and local factors (e.g. availability of land, power supply, operator skills)
- ASP Stages including aeration, bio-sludge separation, return of bio-sludge to aeration tank and sludge wasting

Conclusion

- ASP efficiency depending on bacterial population, usually by MLSS parameter
- Maintain F/M at designed level to ensure right quantity of food for bacteria
- Control system effectively by calculating process parameters like SVI as well as maintaining optimum SVI and SRT

Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH

Registered offices Bonn and Eschborn

Friedrich-Ebert-Allee 32 + 36 53113 Bonn, Germany T +49 228 44 60 - 0 F +49 228 44 60 - 17 66

E info@giz.de I www.giz.de Dag-Hammarskjöld-Weg 1 - 5 65760 Eschborn, Germany T +49 61 96 79 - 0 F +49 61 96 79 - 11 15

