# Training of Trainers Training program for Operators in textile effluent treatment plants

Promotion of Sustainability in the Textile and Garment Industry in Asia - FABRIC







Day 2: Presentation 2

# **Chemical Treatment systems**



Units in chemical treatment

**Common chemicals used in Bangladesh ETPs** 

**Coagulation & flocculation** 

**Floatation & sedimentation** 

Post primary treatment

### Units in Chemical treatment

| Chemical<br>slurry<br>preparation & | <ul> <li>consists of 2 or 3 small tanks with agitators.<br/>coagulant, neutralising agent and<br/>polyelectrolytes</li> </ul> |
|-------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|
| Flash mixer                         | <ul> <li>Where the prepared chemical slurry is<br/>mixed with equalised effluent</li> </ul>                                   |
| Flocculator                         | • To aid settleable floc formation of solids                                                                                  |
| Solids separation unit              | <ul> <li>Where the precipitated solids are<br/>separated throough settling, filtration or<br/>floatation</li> </ul>           |

# Flocculator & clarifier







# What are the chemicals used in Textile ETP?



# Coagulation



#### Reaction Tank / Flash Mixers



- Fitted with mixer for rapid mixing (rpm=60-150)
- HRT = 5 10 minutes
- Dosing system of Lime (5% solution) and FeSO<sub>4</sub> (10% solution)
- Excess FeSO<sub>4</sub> 1 kg = 0.4 kg excess sludge and retain colour in aeration tank

HRT (hours) =  $\frac{\text{Total Volume } (\text{m}^3)}{\text{Flow Rate of Effluent } (\text{m}^3/\text{hr})}$ 

# Color change on oxidation of ferrous ion



No overdosing of ferrous sulphate please!!

# Flocculation aids

The chain is long enough to allow active groups to bond to multiple colloids





#### Flocculation Tank



- Fitted with mixer for rapid mixing (rpm=20)
- HRT = 20 30 minutes
- Dosing system of Poly Electrolyte (0.05-0.1% solution)

# pH Correction Tank





- Fitted with mixer for rapid mixing (rpm=20)
- HRT = 5 10 minutes
- to bring down the pH within a range of 6.5 to 8.5
- Dosing system of lime/sulphuric acid (2.5% solution)
- Excess lime produces excess sludge

# Vertically and horizontally rotating flocculator paddles



# Dosing Tanks



- At least two sets for each chemical with agitator
- Can hold sufficient quantities of solution for at least 8 h
- Tank Volume (m<sup>3</sup>) = Feed Rate (m<sup>3</sup>/h) x Time (h)

Where: Feed rate = Required flow of chemical (m<sup>3</sup>/h) Time = 8 h

# Ensure proper dosing



#### Jar Tests

# Purity of the chemicals

• A jar test simulates the coagulation and flocculation processes

#### **Determination of optimum pH**

- Fill the jars with raw water sample (500 or 1000 mL) – usually 6 jars
- Adjust pH of the jars while mixing using H<sub>2</sub>SO<sub>4</sub> or lime (pH: 5.0; 5.5; 6.0; 6.5; 7.0; 7.5)
- Add same dose of the selected coagulant (alum or iron) to each jar (Coagulant dose: 5 or 10 mg/L)



#### Jar Tests – optimum pH

#### **Determination of optimum pH**

- Rapid mix each jar at 100 to 150 rpm for 1 minute.
- Rapid mixing helps to disperse the coagulant throughout each container
- Reduce the stirring speed to 25 to 30 rpm and continue mixing for 15 to 20 mins
- Slower mixing speed helps promote floc formation
- Turn off the mixers and allow flocs to settle for 30 to 45 mins
- Measure the final residual turbidity in each jar
- Plot residual turbidity against pH



# Jar Tests – optimum pH



#### Jar Tests – Coagulant dose

- Repeat all the previous steps
- This time adjust pH of all jars at optimum (6.3 found from first test) while mixing using or Lime/ H<sub>2</sub>SO<sub>4</sub>
- Add different doses of the selected coagulant (alum or iron) to each jar (Coagulant dose: 5; 7; 10; 12; 15; 20 mg/L)



- Rapid mix each jar at 100 to 150 rpm for 1 minute. The rapid mix helps to disperse the coagulant throughout each container
- Reduce the stirring speed to 25 to 30 rpm for 15 to 20 mins

#### Jar Tests – Coagulant dose

- Turn off the mixers and allow flocs to settle for 30 to 45 mins
- Then measure the final residual turbidity in each jar
- Plot residual turbidity against coagulant dose
- The coagulant dose with the lowest residual turbidity will be the optimum coagulant dose



Aluminum sulfate: Al<sub>2</sub>(SO4)<sub>3</sub>.14 H<sub>2</sub>O

Iron salt- Ferric sulfate: FeSO<sub>4</sub>.6H<sub>2</sub>O

Iron salt- Ferric sulfate: Fe<sub>2</sub>(SO4)<sub>3</sub>

Iron salt- Ferric chloride: Fe<sub>2</sub>Cl<sub>3</sub>

Polyaluminum chloride (PAC): Al<sub>2</sub>(OH)<sub>3</sub>Cl<sub>3</sub>

#### Preliminary and Primary Treatment

#### Alkalinity calculation

If 200 mg/L of alum to be added to achieve complete coagulation. How much alkalinity is consumed in mg/L as  $CaCO_3$ ?

 $\underbrace{\text{Al}_2(\text{SO}_4)_3.14 \text{ H}_2\text{O}}_{594 \text{ mg}} + \underbrace{6\text{HCO}_3}_{366 \text{ mg}} \Leftrightarrow 2\text{Al}(\text{OH})_3 \downarrow + 6\text{CO}_2 + 14\text{H}_2\text{O} + 3\text{SO}_4^{-2}$ 

594 mg alum consumes 200 mg alum will consume 366 mg HCO<sub>3</sub>

(366/594) x 200 mg HCO<sub>3</sub>-

 $= 123 \text{ mg HCO}_3$ 

Alkalinity in mg/L as CaCO<sub>3</sub>

= 123 x (50/61)

= 101 mg/L as  $CaCO_3$ 



# What are the types of solids separation units used in ETP?



# Dissolved air floatation



- In DAF sludge formation enhanced by flocculants and floatation by dissolved air.
- Air is mixed in water/effluent under pressure, then released to atmospheric pressure in flotation tank.
- Released air forms tiny bubbles adhere suspended matter causing to float to surface as foamy sludge.
- The sludge is then removed by a skimming or scooping device.
- The Krofta type DAF shown in the picture is a a traditional unit.

#### **Dissolved Air Floatation**



- DAF works better with lighter suspended solids than one with chemical sludge (lime etc.).
- It works reasonably well in textile effluents, but process control is difficult.
- DAF units can be constructed as horizontal units floating sludge is scooped by a travelling skimmer.
- Advantages of DAF include occupying much less space compared to sedimentation units.
- Major disadvantage is (a) relatively lower solids consistency in sludge and (b) higher O & M costs due to the requirements of higher chemical dosage.

#### **Dissolved Air Floatation - circular**



In Krofta type circular DAF, the scum in the top is scooped using a rotating skimmer arm.

The liquid sludge is then admitted into a sludge chamber which is then taken out for dewatering.

#### **Dissolved Air Floatation - Rectangular**



In rectangular DAF, a travelling arm scoops the sludge on the top to one side and the push it to the sludge trough.

The sludge is then taken out for dewatering.

#### Sedimentation



- Sedimentation removes suspended solids present. It works based on the difference in density.
- Types of sedimentation are:
  - Discrete settling, if the wastewater is relatively diluted and the particles do not interact.
  - Flocculent settling, if the particles are flocculated particles of larger mass and faster settling rate.
  - Zone settling, also called hindered settling : when particles adhere together and settle as a blanket. e.g: sludge setting in secondary clarifiers
- This sedimentation is used in both primary treatment and secondary treatment.

# Horizontal flow settling units





## **Circular clarifiers**



- Circular tanks more effective. Types Centre fed and rim tanks.
- Settled solids are removed from center, bottom slope 10%.
- Sludge is swept to center by two or four arms with scrapers (Central/ Peripheral drive)
- Center-fed tanks circular inflow well. Rim-fed tanks has baffle, effluent enters tangentially.
- Even distribution of inlet and outlet flows avoid shortcircuiting - reduce separation efficiency.

# Circular clarifiers



Circular clarifiers are the most common settling units elsewhere in the world, though tube settlers are more popular in Bangladesh

#### Hopper bottom settling tanks



The advantage of sloped bottom sedimentation tank is that a rotating sludge scraper is not required.

#### Tube settler



- A tube settler is made up tubular channels that are placed adjacent to each other.
- These are placed at 60 degrees and combined to increase the effective settling area of particles.
- The settling zone depth is less than conventional clarifier.
- Individual tubes makes it easier for floc to settle fast.
- Tube settler make use of fine floc that manages to go past clarification zone to arrest fine particles

#### Tube settler



- Larger particles in a better shape.
- Operate on principle of settling velocity.
- Lightweight PVC tubes which are adjacently placed and joined at an angle (60 degrees)
- Tube settler is different from a plate settler

#### Tube settler

- It is smaller than conventional clarifiers
- It is made of PVC lightweight material. This makes it easily portable.
- It is quicker to install
- They can be fitted in different sizes and shapes in tanks. This is because of their lightweight and portability.

- It needs more frequent sludge withdrawal.
- Unless the sludge evacuation is very efficient, it can create sludge overflows.
- If used as a pre-treatment to ZLD, the PVC can break and its chards clog the expensive membrane.

#### Tube Settler Advantages



# Tube Settler Disadvantages

# Tube settler & media





#### Plate settlers



Though very similar, plate settlers are usually deeper than tube settlers and the media tends to be heavier.

Its capital costs are usually higher than tube settlers.

# Importance of V Notch



V notch weir adjustment ensure uniform overflow and effective settling. Surface Overflow Rate (SOR) calculated falls within the guidelines:

Plain clarifier: 0.9 - 1.2 m<sup>3</sup>/hr/m<sup>2</sup>(m/h)

Tube settler:  $2.0 - 2.5 \text{ m}^3/\text{hr/m}^2(\text{m/h})$ 

Lamella clarifier: 1.2 -1.5 m<sup>3</sup>/hr/m<sup>2</sup>(m/h)

Note: SOR (Surface Overflow Rate) is the main criteria for calculation of area

(size) of clarifier, not retention time

# Surface Overflow Rate (SOR)



Where:

Flow = Proposed design flow rate For circular clarifiers, Surface Area =  $0.785 \times D^2$ For rectangular clarifiers, Surface Area = L x W Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH

Registered offices Bonn and Eschborn

Friedrich-Ebert-Allee 32 + 36 53113 Bonn, Germany T +49 228 44 60 - 0 F +49 228 44 60 - 17 66

E info@giz.de I www.giz.de Dag-Hammarskjöld-Weg 1 - 5 65760 Eschborn, Germany T +49 61 96 79 - 0 F +49 61 96 79 - 11 15

